![]() |
A Background Estimation dataset |
||||
![]() ![]() ![]() ![]() ![]() |
|||||
Presentation These pages describe a Background Estimation dataset (BEds), a corpus of video sequences generated from publicly available video-surveillance datasets to cover several Background Estimation challenges. The dataset is focused on 4 challenges or categories conformed by 10 video sequences each and the associated ground-truth background image. Video sequences have been extracted from the following public datasets related with the video-surveillance task: 1) MALL: Video sequences used for crowd counting and profiling research. 2) Bank Street: Video sequences used for anomaly detection. 3) CAVIAR: Video sequences used for event detection. 4) CUHK Crowd Dataset: Video sequences used for Scene-Independent Group Profiling in Crowd. 5) I2R: Video sequences used for Background Subtraction. 6) ATON: Video sequences used for Shadow detection. 7) CVRL: Video sequences used for video-surveillance in indoor scenarios. 8) IITK: Video sequences used for object-tracking, activity recognition, congestion analysis or vehicle counting. 9) CDNET2014: Video sequences used for Background Subtraction. 10) APIDIS: Video sequences used for detection and tracking. 11) AVSS2007: Video sequences used for abandoned object detection an illegally parked vehicle detection. 12) PBI: Video sequences recorded for Background Estimation. 13) Wallflower: Video sequences used for Background Subtraction 14) PETS2009: Video sequences used for pedestrian detection and tracking. 15) LOST: Video sequences recorded for long term observation of scenarios. 16) LIMU: Video sequences used for Background Subtraction. For more details please refer to the "Content" section. Related works (using dataset) : [1]
Carolina Fernández-Pedraza, “Reconstrucción de fondo de escena a partir de secuencias de vídeo&rdquo, Graduate thesis of Grado en IngenierÃa de Tecnologías
y Servicios de Telecomunicación at Escuela Politécnica Superior (Universidad Autónoma de Madrid). Supervised by Diego Ortego and José M. Martínez.
Work partially supported by the Spanish Goverment under project TEC2014-53176-R (HAVideo).
![]() |