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1. Introduction 
Convolutional neural networks (CNNs) have revolutionized artificial vision 

analysis as these networks yield close-to-human accuracy for challenging vision 
tasks by utilizing large and annotated datasets. However, generating and 
annotating these datasets are time consuming and sometimes require 
expensive expertise for some domains such as medical imaging. Self-
Supervised Learning (SSL) has proven to be a successful strategy to tackle this 
problem. SSL does not use annotations; it generates pseudo labels by means 
of a pretext task (e.g., recognizing different augmented view of the same image) 
to train the CNNs high level semantics that are useful for solving vision tasks by 
re-training the CNN with small datasets. 

 
This deliverable describes the work related to task T2.1: “Self-supervised 

frameworks and pretext tasks”, T2.2: “Skin lesion assessment” and T2.3: “Lung 
nodule malignancy evaluation”. The aim of T2.1 is to compare state-of-the-art 
SSL approaches, exploring the influence of the CNN architecture, the pretext 
task, and the training schedule. The aim of tasks T2.2 and T2.3 is to compare 
deep learning state-of-the-art approaches to skin lesion assessment and lung 
nodule malignancy evaluation. 
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2. Self-supervised frameworks and pretext 
tasks 

 

2.1. Image embeddings for characterization. 
We refer to an image embedding as the features extracted at a given 

layer of a deep learning model when a particular image is fed to it. These 
embeddings are accepted as a representative description of the image—
subjected to the training target. Usually, one can expect that, at a given layer 
and for a given architecture, the higher the performance of the learned model is, 
the more representative the embeddings will be. A common way to obtain 
image embeddings is by using a network trained in the supervised mode [1][2].  

Alternatively, SSL models can be used if images are to be represented in 
label scarce scenarios—as medical data requiring expert annotations or data 
acquired using devices capturing at non-visual modalities. SSL methods, 
instead of being trained for a label-driven task can be trained by using 
objectives such as a simple geometric task[3][4], pseudo labels generated 
through automatic clustering [5][6], or promoting proximity of "similar" data 
points in the feature space [8][9][10][11][12].  

These objectives are commonly known as pretext tasks and can be used 
to arrange SSL models into three groups: geometric, clustering-based, and 
contrastive. 
 

2.2. On the nature of pretext tasks. 

Geometric models  
One of the most straightforward approaches to defining a pretext task is 
applying a geometric transformation to an input image and training a network to 
solve it. The three geometric pretext tasks considered in this paper are rotation 
prediction [4], relative patch location prediction [3] and jigsaw puzzles [14]. The 
rotation prediction pretext task randomly applies one out of 4 rotations: 0º, 90º, 
180º, 270º, to each training image sample and trains the network to predict 
which rotation was applied to a given image.  

On the other hand, a model trained to predict patch locations is based on 
randomly sampling two close regions from an input image and training the 
network to predict their relative spatial location. Finally, when a jigsaw puzzle 
strategy is followed, the image is divided into tiles, that are then randomly 
shuffled. Then, the network is trained to predict their original arrangement. 
 

Clustering-based representation learning 
A more sophisticated approach to deep unsupervised learning is based on the 
classical clustering methods that are used to group unlabeled data into clusters 
according to some homogeneity criteria. An obvious way to incorporate 
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clustering into the pretext task formulation is to perform clustering after each 
model update step. The generated labels are then used as pseudo-labels to 
evaluate the model in a supervised manner. These labels would, in turn, change 
the embeddings at the next step as the newly generated labels may differ from 
the labels at the previous step.  

This is the strategy followed by Deep Clustering (DC) [5], that suffers 
from instability during the training process due to the random permutation of 
labels at each step. To tackle the issue of labels permutation and instability, 
Cluster Fit [15] relies on using a teacher network to define the pseudo-labels. 
Differently, in Online Deep Clustering (ODC) [6] the labels are updated using 
mini-batches and this process is integrated into the model update. This way, the 
embeddings and labels evolve together and the instability inherent in DC is 
eliminated. 
 

Contrastive models 
Top performing SSL models are driven by pretext tasks using contrastive losses 
[16]. Although exact implementations vary from model to model, the main idea 
remains the same: to learn representations that map the positives close 
together and push apart the negatives. The positive samples might be chosen 
based on modifications of patches in the same image or applying different 
augmentations obtained from the same image.  

Non-Parametric Instance Discrimination (NPID) [17] treats each input 
image (instance) as belonging to a unique class and trains the classifier to 
separate between each instance via the noise-contrastive estimation [18]. The 
motivation for it comes from the observation that supervised learning 
approaches return similar embeddings for related images. Specifically, it is often 
the case that the second top scoring predicted class at the end of the model is 
semantically close to the first one following a human interpretation. Therefore, 
the network is expected to learn the semantic similarity between classes without 
explicitly having it as the objective. 

Momentum Contrast (MoCo) [12] leverages a dynamic dictionary where 
query and associated keys represent image encodings obtained with an 
encoder network. If a query and a key come from the same image, they are a 
positive pair, otherwise a negative one. The queries and the keys are encoded 
by separate networks and the key encoder is updated as a moving average of 
the query encoder, enabling a large and consistent dictionary for learning visual 
representations. 

Simple Framework for Contrastive Learning of Visual Representations 
(SimCLR) [7], building on the principles of contrast learning, introduces a series 
of design changes that allow it to outperform MoCo [12] not requiring a memory 
bank. Among these changes are a more careful choice of data augmentation 
strategies, addition of a non-linearity between the embeddings and the 
contrastive loss, and increased batch sizes and the number of training steps. 
Further improving on the results of SimCLR [7], the second version of 
Momentum Contrast model (MoCo v2) [9] acknowledges its efficient design 
choices and takes advantage of an MLP projection head and more data 
augmentations. 
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Bootstrap Your Own Latent (BYOL) [11] reaches a new state-of-the-art 
on ImageNet linear classification while avoiding one of the greatest challenges 
that other contrastive models face: a need for negative pairs. BYOL circumvents 
this problem by generating the target representations with a randomly initialized 
model and then using them for its online training, by iteratively updating the 
target network, the online network is expected to learn better and better 
representations. 

Finally, SwAV [19] describes a hybrid clustering-contrastive method that 
avoids the computation of pairwise distances between positive and negative 
samples by clustering the data in consistency-enforced clusters of the different 
image augmentations. Thereby, defining positive samples according to cluster 
memberships and reducing the distance storage requirements of the other 
contrastive methods.   

2.3. Developing framework. 
We have set up a very recent and powerful open-source framework for 

pretext-task comparison, the OpenSelfSup framework of the open-mmlab 
initiative [20]. This framework allows the definition of tailored pretext-tasks and 
self-supervised frameworks and already have trained models for some of the 
pretext tasks as well as for recent top-performing state-of-the-art ones, including 
deep clustering [6][19], instance discrimination [17], contrastive learning [7] [9] 
[12] and latent bootstrapping [19].  

As a relevant outcome of the project, we have arranged this developing 
framework and include new architectures, datasets, and models for self-
supervised learning. Trained models include those trained in the context of this 
project but also models from alternative existing developing frameworks [21]. 
Moreover, we have also defined protocols and created tutorials for including 
new ones in the future. 

2.4. Study on the social-biased learned by self-
supervised methods 

Deep neural networks are efficient at learning the data distribution if it is 
sufficiently sampled. However, they can be strongly biased by non-relevant 
factors implicitly incorporated in the training data. These include operational 
biases, such as ineffective or uneven data sampling, but also ethical concerns, 
as the social biases are implicitly present—even inadvertently, in the training 
data or explicitly defined in unfair training schedules. In tasks having impact on 
human processes, the learning of social biases may produce discriminatory, 
unethical, and untrustworthy consequences. It is often assumed that social 
biases stem from supervised learning on labelled data, and thus, Self-
Supervised Learning (SSL) wrongly appears as an efficient and bias-free 
solution, as it does not require labelled data. However, it was recently proven 
that a popular SSL method also incorporates biases. In this paper, we study the 
biases of a varied set of SSL visual models, trained using ImageNet data, using 
a method and dataset designed by psychological experts to measure social 
biases. We show that there is a correlation between the type of the SSL model 
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and the number of biases that it incorporates (see a visual representation of it in 
Figure 1). Furthermore, the results also suggest that this number does not 
strictly depend on the model’s accuracy and changes throughout the network. 
Finally, we conclude that a careful SSL model selection process can reduce the 
number of social biases in the deployed model, whilst keeping high 
performance. 

 

 

Figure 1 . Number of biases detected in the embeddings of the Global Average Pooling layer for 
different values of pt. Biases detected for lower values of pt are statistically more significant. 
Contrastive models are plotted with thick solid lines, geometric mode 

3. Skin lesion assessment 

3.1. Initial findings 
 

As a preliminary task, we have evaluated ([22][23][24]) SOTA methods on the 
ISIC 2017 and 2019 datasets [25]: 
(1) Evaluated the effect of using a rotation prediction pretext task for learning 

features to be transferred for skin lesion assessment. Results suggest 
that rotation is a decent pretext task for learning representations on 
colour domains but fails in a domain less spatially structured as the skin 
lesion one [22]. 

(2) Evaluated the effect of using different CNNs architectures (ResNet, 
DenseNet and SqueezeNet) and data augmentation strategies. 
Preliminary results suggest that DenseNet yields top performance among 
the methods compared [23].  
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(3) Design a method to compare skin lesions in time, to quantify the 
evolution of the lesion and to provide additional data for the project. 
Preliminary results pave the road towards a semi-automatic analysis of 
these scenarios [24].   

3.2. State of the art in skin lesion recognition 
Due to privacy restrictions, to the relatively low rate at which certain medical 
conditions develop, and to the uneven distribution of suitable capture devices 
worldwide, a very small amount of medical imaging data is publicly available. In 
the subfield of skin lesion analysis, one of the largest accessible collections of 
imaging data is the International Skin Imaging Collaboration (ISIC) dataset that 
aggregates the data from other sources, such as HAM 10000 dataset [26], MSK 
dataset [27] and BCN 20000 dataset [28]. Annual public challenges based on 
the ISIC dataset target multi-class (predicting the exact type of a skin lesion) or 
binary (malignant vs. benign) classification problems. Whereas the latter can be 
considered an almost solved problem (ISIC-2020—a binary melanoma 
recognition problem—challenge winners achieved 0.949 on ROC AUC metric), 
the multi-class problem proposed in ISIC-2019 is still an open one, where the 
best reported approach [29] currently reaches only 72.5% ± 1.7% of balanced 
accuracy (average per-class accuracy).  

Although ISIC-2019 is the largest publicly available skin lesion dataset 
with multi-class annotations, containing over 25000 labeled images, its size is 
small compared with those used for standard CNN training in well-established 
tasks. Moreover, the number of samples per class ranges from 239 to 12875, 
making it highly imbalanced and further complicating CNN training—e.g., a 
vanilla ResNet-50 [1] does not reach 50% of balanced accuracy, as shown in 
Table I. Some works address this issue by designing new loss functions that 
account for severe class imbalances [31]. However, the general trend seems to 
be increasing the complexity of neural models and utilizing deeper 
architectures, such as DenseNets [32] or very deep ResNets [1]. Continuing in 
the same direction, the top three best performing approaches in ISIC-2019 skin 
lesion diagnosis challenge are based on ensembles of neural networks that 
leverage multiple models to infer predictions [29], [33], [1]. 
 

3.3. Self-Supervised Learning in skin lesion 
recognition 

 
The promise of learning useful representations without requiring labelled data 
led to the applications of SSL strategies to the medical imaging, where data 
labelling is challenging. Several recent works target the skin lesion recognition 
problem leveraging SSL approaches for model pretraining. This narrows the 
gap between SSL and fully supervised pretraining on ImageNet but, in most 
cases, does not yet close it. For example, a recently proposed approach [35] 
reaches 80.6% of accuracy on a multi-class ISIC-2018 classification problem by 
employing self-supervision to obtain transformation invariant features. 
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Specifically, features extracted at each epoch from the image decoder module 
of a CycleGAN architecture [36] are assigned to N clusters without a prior 
knowledge of N, using the maximum modularity clustering algorithm [37]. The 
memberships of the samples are used as pseudo labels to optimize the 
features.  

A different study compares the individual performances of five existing SSL 
models [38] (BYOL [11], MoCo [12], SimCLR [7], InfoMin [39], SwAV [18]) on 
the ISIC-2019 data, but only considers the binary classification problem, 
reaching 0.956 on the standard for binary problems metric—ROC AUC (area 
under the precision-recall curve). On the contrary, another recent work does 
consider the multi-class skin lesion classification problem and shows that 
SimCLR pretraining outperforms supervised pretraining [40]. However, this 
study relies on a private dermatoscopic dataset containing over 450 000 
samples. 

Nevertheless, there is a gap in the current state-of-the-art as, to our 
knowledge, none of the existing approaches considers more than one SSL task 
in the pretraining stage, thus, limiting the resulting performance by not taking 
advantage of the pretext tasks of different nature. Moreover, with seldom 
exceptions, most works that use SSL pretraining in the skin lesion domain rely 
only on contrastive models (as these are generally the most accurate ones), 
thus, the potential contributions of clustering and geometric models are still 
barely explored. Finally, a multi-class skin lesion recognition problem is 
relatively unexplored by SSL methods, as most works focus on the binary 
melanoma recognition task, and only a few studies target the multi-class 
problem of the older (and smaller) versions of the ISIC dataset. 

4. Lung nodule malignancy evaluation 
The problems and uncertainty associated with the reference benchmark for this 
task [41] preclude the fulfilment of the project’s objectives. Therefore, we moved 
to a similar non-colour modality task, in particular we focused on X-Ray chest  
[42] and COVID-19 [43] images. 

4.1. On COVID-19 originated Pneumonias 
 

The COVID-19 pandemic has had a devastating effect on the health and well-
being of the world's population. One of the most important points in the fight 
against COVID-19 is the effective and early detection of infected patients, with 
medical imaging tests (X-rays and computed tomography) being one of the 
main forms of detection. In early studies [44] infected patients were found to 
have certain abnormalities in the chest (see Figure 2). 
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Figure 2 Example of abnormalities appreciable by x-ray images of different patients infected by 
COVID-19 and the associated critical factors (highlighted in red). Extracted from [45]. 

 

Although the diagnosis is mainly microbiological, imaging techniques play an 
important role in supporting this diagnosis, grading the severity of the disease, 
guiding treatment, detecting possible complications, and assessing the 
therapeutic response. Chest radiography is the first imaging method due to its 
wide availability and low cost. Thoracic computed tomography has greater 
sensitivity than chest radiography and allows assessment of both lung 
involvement and possible complications, in addition to providing alternative 
diagnoses. However, the latter is much more expensive and less accessible, so 
it has had less involvement in the studies. 

 

4.2. Detection of COVID-19 originated Pneumonias in 
X-Ray images 

 
Motivated by the need to achieve faster interpretation of medical images, 

several artificial intelligence systems based on deep learning have been 
proposed to accomplish this task. The conclusions of these have been quite 
promising in terms of detection of patients infected with COVID-19. Most of 
these studies have focused on the exploration of deep convolutional neural 
networks, thanks to the success that these algorithms present in artificial vision 
tasks. 

Among these studies we can highlight COVIDNet [45], which will be 
studied in depth in Section 3.3. It is a deep convolutional neural network, which 
uses chest X-ray images to carry out detection of possible cases of COVID-19. 
This model allows the images to be classified into three classes, separating the 
images according to whether they present pneumonia caused by the COVID-19 
virus, whether it is pneumonia caused by any other virus, or the patient in 
question does not present any type of pneumonia. 

Another of the main studies carried out for the detection of COVID-19 
through medical imaging is Deep COVID [46]. This study is based on the use of 
a deep learning framework that directly predicts possible COVID-19 infections 
from raw images, without the need to perform prior feature extraction. It is made 
up of four well-established and studied convolutional neural networks 
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(ResNet18 [1], ResNet50 [1], SqueezeNet [47], and DenseNet161 [32]). The 
results obtained for the four neural networks are included in Table 1.  

It is also worth noting the study carried out by a group of Brazilian 
researchers [48], in which they intend to obtain an accurate and efficient 
method in terms of memory and processing time for the detection of COVID-19 
in chest X-rays. To do this, they use the family of convolutional neural networks 
EffcientNet [49], known for the high precision it achieves with great efficiency. 
 

ConvNet Accuracy(%) 
ResNet18 86.9 

ResNet50 89.9 

SqueezeNet 89.7 

DenseNet161 86.3 
Tabla 1. Results obtained by the Deep-COVID model for different types of ConvNet 

architectures. Adapted from [46]. 
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