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1. Introduction 
This deliverable describes the work related to tasks T3.1: “Empirical definition and 
completion of a pretext task curriculum”, T3.2: “Evaluation of the impact of the 
architecture and training schedule”, and T3.3: “Self-paced multi-task self-supervision”. 
The aim of tasks T3.1 and T3.2 is to define pretext tasks orderings (curricula) and 
evaluate the dependencies between the task curriculum and the training framework. 
Task 3.3 aims to define a learning framework that permits to automatically define a 
pretext task curriculum for a given target task. 
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2. Empirical definition and completion of a 
pretext task curriculum 

 
In scenarios with a lack of training data, it is beneficial to pretrain CNN models 
on (preferably) domain-similar datasets to obtain a better starting point for 
training on the downstream task (i.e., the target task, such as skin lesion 
classification) [1]. Usually, such starting points are obtained by supervised 
training of a CNN model on a large and widely accepted as representative 
dataset, such as ImageNet [2]. Importantly, even when the domains of datasets 
used for pretraining and downstream task training differ significantly, pretraining 
still yields better performance than using randomly initialized weights [1]. 
Nonetheless, this limits the model selection to architectures with publicly 
available ImageNet-pretrained models, implying a computationally expensive 
and time-consuming training procedure for new model architectures, or 
architectures designed ad-hoc for specific tasks, such as skin lesion 
recognition. 
 
In such situations, especially when labeled data in the target domain is scarce 
or non-existent, a common method to pretrain CNN models is to use Self-
Supervised Learning (SSL) - a subset of unsupervised learning methods that 
leverages automatically generated labels as training objectives. Previous works 
show the advantages of SSL-pretraining applied for object recognition [3], 
where SSL-pretrained models outperform models pretrained on ImageNet in a 
supervised regime, on object recognition tasks or skin lesion assessment [4], 
where SSL-pretraining makes models more robust to noise. Here, we propose a 
step further for SSL pretraining by showing that the consecutive use of properly 
ordered pretext tasks can improve transfer learning results. Curriculum learning 
strategies [5] propose to order samples during training according to their 
learning outcomes. Inspired by these techniques, we propose to use a 
curriculum ordering of pretext tasks.  
 
We have designed a framework to train visual models based on CNN 
architectures using a sequence of different SSL pretext tasks. A diagram of the 
implemented training scheme can be found in Figure 1. Curriculum (or anti-
curriculum) orderings are defined empirically, based on the performance of 
individual pretext tasks, after transfer learning to the target task. Specifically, we 
define as curriculum orderings those coinciding with the increasing individual 
pretext task transfer learning performances. We group all orderings as follows: 

• Curriculum: ordered by increasing performance. 
• Anti-curriculum: ordered by decreasing performance. 
• Full (anti-)curriculum: (anti-)curriculum comprised by all tasks. 

Any other ordering is considered a Mixed-curriculum. 
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Figure 1 Implemented training scheme using a sequential pretext task curriculum. 

 
The implemented framework is based on the MMSelfSup framework [6], and 
allows to evaluate the performance of different curriculum SSL training 
configurations, including number of pretext tasks and variable orderings. The 
design of experiments on this framework has been based on the hypothesis 
that, given a downstream task, an advantageous ordering of pretext tasks can 
be obtained by sorting the tasks according to the increasing order of their 
individual performances (curriculum orderings).  
 
This training scheme has been described in the following paper [7] that has 
been submitted to the IEEE Journal BHI, which is currently under review. This 
training scheme has shown advantages over other state-of-the-art alternatives 
in the use-case of skin lesion image classification (which will be reported in 
deliverable D4), and we plan to evaluate its performance on a different medical 
image domain, namely x-ray lung images (the obtained results will also be 
reported in deliverable D4). 

3. Evaluation of the impact of the architecture 
and training schedule 

3.1. Evaluation of the impact of training schedule 
The training process of any CNN architecture requires the configuration of a set 
of training hyperparameters that have a direct influence on the training pace 
(how fast the training process converges) and the final performance of the 
trained model. These hyperparameters include the learning schedule, learning 
rate or batch size. Generally, the optimization of these hyperparameters 
requires to repeat training processes with different hyperparameter 
configurations, increasing the required computational resources (i.e., GPU 
memory, time, disk space). To address this issue, some approaches attempt to 
reduce the amount of resources that each configuration uses [8][9] through 
early stopping, so that a higher number of configurations can be evaluated 
within a feasible training time and computational resources requirements.  
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The curricular SSL training scheme depicted in Figure 1 requires the execution 
of multiple sequential training steps, where the training hyperparameters of 
each step may influence the subsequent ones, as it sets the starting point for 
the model weights in the next training step. An exhaustive evaluation of all 
hyperparameter combinations, for all training steps, would exponentially 
increase the required training resources beyond a feasible limit. 
 
To verify the influence of hyperparameter configuration in each training step on 
the performance of the downstream task, we have carried out a series of 
experiments to estimate the effect of learning-rate selection in each training 
step of Figure 1. The following process is performed at each training step:  

• Uniformly sample n initial values of the learning rate (typically 10 or 20) 
from a pre-defined range, such as [0.01; 0.6] or [0.0001; 0.6] depending 
on the scenario – models that were already trained before typically 
benefit from a lower starting learning rate, while models with randomly 
initialized parameters might require more aggressive learning rates. 

• The model is trained with each learning rate on a reduced training 
dataset and for a limited number of epochs. 

• The learning rate that leads to the highest performance/lowest loss value 
is used to train the model on the full dataset and for the full number of 
epochs. 

 
The reduction in the dataset size and the number of epochs significantly 
decreases the computational complexity which allows us to search through a 
wider range of learning rate values.  
 
The proposed approach is applied sequentially to each step of the curricular 
SSL training scheme described in Section 2 and shown on Figure 1: TS1, TS1,…, 
TSk and TT. Specifically, we train each stage with each of the 20 learning rates 
sampled from the range [0.0001; 0.6] on 8% of ISIC-2019 training dataset. This 
approach resulted in the increase in the accuracy on the target task TSt for all 
tested pretraining setups with respect to the default learning rate values defined 
for ImageNet, including ODC (+10.48%), SwAV (+1%), Relative Location (+1%), 
Relative Location -> ODC (+3.6%). 

3.2. Effect of dataset size on the performance of the 
pretext task curriculum 

In the work reported in [10], we have performed exploratory experiments 
on: (1) measuring the effect of the training dataset size (number of instances) in 
the curricular SSL training scheme described in Section 2, and (2) the effect of 
the relative training dataset size of the SSL pretraining steps with respect to the 
size of the dataset utilized to fine-tune the model to the target downstream task, 
i.e., whether using larger unlabeled dataset sizes for the SSL pretraining steps 
increases the performance in the downstream task. These exploratory 
experiments are performed using the multi-class ISIC-19 dataset [13]. 
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Table 1 presents a summary of the balanced accuracy results obtained with 
different dataset sizes for the: i) SSL pretraining steps, and ii) downstream task 
classifier. Results are obtained for a curricular SSL of:  Relative Loc  SwAV  
classifier. The results in the diagonal of the table show that the size of the 
training dataset is relevant for the performance (from an accuracy of 42.19% 
with a 12.5% size to an accuracy of 71.00% with the whole dataset). However, 
the size of the dataset in the SSL steps does not influence the results that much 
(42.9% accuracy using 12.5% of the dataset for SSL pretraining and 
downstream classifier, to 43.65% accuracy using 100% of the dataset for SSL 
pretraining and 12.5% for the downstream classifier). More details of these 
experiments are given in [10]. 
 
Table 1 Balanced accuracy results obtained with different dataset sizes for the: i) SSL 
pretraining steps, and ii) downstream task classifier. Dataset sizes are given as a 
percentage of the original dataset size (100%). Dataset sizes for the SSL steps are always 
larger than the downstream classifier. 

 SSL pretraining steps 

D
ow

ns
tre

am
 

cl
as

si
fie

r 

 100% 50% 25% 12.5% 
100 % 71.00 - - - 
50 % 58.41 59.11 - - 
25 % 51.45 51.67 49.32 - 

12.5 % 43.65 42.88 43.01 42.19 

4. Self-paced multi-task self-supervision 
 
The empirical definition of the curriculum of pretext tasks, described in 
Section 2, has required a high amount of the design and implementation effort 
in the project, so this task has been covered with exploratory experiments.  
 
These exploratory experiments have been oriented to analyze: 

1) The correlation between downstream task performance obtained with 
single-SSL pretraining, and the definition of an optimum SSL curriculum. 

2) The similarity of features learned by different SSL tasks, to measure their 
level of complementariness. 

3) The possibility of defining a metric that measures the transferability of 
models trained with different SSL pretext tasks from one image domain 
to another one. 

 

4.1. Single-SSL pretraining downstream task 
performance for the definition of a task curriculum 
order 

The fundamental hypothesis we have evaluated in these experiments is based 
in the following conditions:  
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- SSL tasks can be ordered by downstream accuracy obtained with single-

SSL task pretraining, i.e., training a model in the scheme of Figure 1 with 
two training steps: a single SSL-task (TS1) and downstream 
classification (TT), and measuring the model accuracy at the 
downstream task. We will refer to this as the single-SSL accuracy. 
 

- We want to evaluate whether a curriculum of SSL pretraining tasks, 
ordered by increasing single-SSL accuracy (defined as curriculum 
ordering in Section 2) provides a better downstream accuracy than any 
other ordering. 

 
This hypothesis has been tested for to different medical image domains: 
dermatoscopic skin lesions in [7], using the ISIC-19 dataset [13], and chest X-
Rays in [11], using the SIIM-FISABIO-RSNA COVID-19 Detection dataset [14]. 
 
The results in the ISIC-19 dataset show that the optimum combination of pretext 
tasks is given by two SSL tasks ordered in a curriculum order 
(ODC  MoCov2  downstream classification). However, the performance of 
this scheme outperforms a combination of three pretext tasks in curriculum 
order (ODC  Rel Loc MoCov2  downstream classification). Accuracy 
results are given in Table 2. More details are given on [7]. 
 
Table 2 Balanced accuracy for SSL curricular training with pretext tasks orered in a 
curriculum order for the multiclass ISIC-19 dataset. 

 Balanced Acc. 
ODC  MoCov2  downstream classification 75.44 % 
ODC Rel Loc MoCov2  downstream classification 73.36 % 
 
The results in the SIIM-FISABIO-RSNA COVID-19 dataset show that the 
optimum combination of all possible combinations of three pretext tasks is given 
by a curriculum ordering (MoCov2  SwAV  Rotation  downstream 
classification), and this combination outperforms any other option of single-SSL 
or combination of two SSL tasks (see Table 3). For two SSL-tasks, the second-
best option (Relative Location + SwAV: 85.27%) also follows a curriculum order, 
indicating that arranging the SSL tasks in a curriculum order yields a 
performance competitive with top-performance combinations.  More details are 
given in [11]. 
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Table 3 Balanced accuracies and AIL scores for the curricular SSL-task pretraining con-
figurations. Sequential orderings for SSL-tasks read left to right. The curriculum column 
indicates whether a SSL-task combination follows a curriculum ordering. Results in bold 
refer to the highest score of each block, while results in blue are the highest scores 
overall. 

 
 
Both results in the ISIC-19 and SIIM-FISABIO-RSNA COVID-19 datasets show 
evidence of a degree of correlation between single-SSL accuracy and the 
optimum combination of curricular SSL pretraining tasks. This indicates that 
single-SSL accuracy can be used as a fundamental of the automatic definition 
of SSL curriculums. However, this correlation is not perfect, and evidence 
suggest that single-SSL accuracy is not enough, and should be complemented 
by other metrics that capture other aspects beyond downstream performance. 
 

4.2. Similarity of features learned by different SSL 
tasks  

 
Given the conclusions in Section 4.1, we have also explored the use of Central 
Kernel Alignment (CKA) [12] to measure the similarity of representations, at 
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different network layers, of features learned by pairs of individual pretext tasks. 
Such metric on the similarity of features learned by different tasks, 

 
Figure 2 Similarities of feature maps learned by pretext tasks per layer. The similarity of 
feature maps is measured with Central Kernel Alignment (CKA): values of CKA closer to 
1 indicate strong similarity of feature maps, while values closer to 0 indicate that they are 
dissimilar. 

 
Results for the ISIC-19 dataset are shown in Figure 2. In these results, we 
compare the CKA between pairs of pretext tasks (Relative Location, ODC and 
MoCo v2). ODC and MoCo v2 produce very similar representations (the CKA 
values are close to one for all layers except the final average pooling layer), 
while the representations of Relative Location are very dissimilar from those of 
ODC and MoCo v2. Our hypothesis is that, given that the training directions of 
ODC and MoCo v2 features are aligned, i.e, they both follow similar training 
paths, intermediate Relative Location features in the full curriculum (ODC Rel 
Loc MoCov2  downstream classification, see Table 2) somehow shift the 
feature space, decreasing the performance with respect to ODC  MoCov2  
downstream classification. These results also show of the multi-path training 
idea, i.e., the fact that two models reaching similar downstream accuracy (ODC 
and Relative Location) are relying on dissimilar representations.  
 
This discussion sheds light on the limitations of using single-SSL accuracy to 
define the full curriculum ordering (where all pretext tasks are used). While is 
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better than any anti-curriculum and mixed curriculum orderings using all three 
tasks, it is not always the best option. In this regard, as a direction for the future 
work, we suggest incorporating the CKA analysis (alongside with individual 
pretext tasks accuracy) to consider the relationships between the learned 
representations of the individual tasks when establishing the curriculum 
ordering. 

4.3. Evaluation of the transferability of SSL-trained 
models to a different image domain: 

 
As another experiment to evaluate the possibility of defining a pretext task 
curriculum automatically, we have performed a series of exploratory 
experiments on the transferability of features learned by SSL pretext tasks to a 
downstream task, or datasets of the same or different image modality of the one 
used for training. 
 
To this aim, we start by a set of models trained used different pretext tasks, but 
all learned using the ImageNet dataset and the same architecture (ResNet50). 
The used models are available at this link. Then, we forward-pass images from 
different datasets [16][17][18][19][20][21][22][23] on these models and compare 
the empirical distributions of the features of a given dataset with those obtained 
by feeding the model using ImageNet [24] images. The comparison is 
performed in terms of the Fréchet Inception Distance (FID) [15]. As a reference, 
we randomly divided ImageNet into two disjoint sets and obtain the FID 
between these two sets using the same process. We then normalized FID 
between datasets by this reference to yield normalized FIDs.  
 
Results of this process can be observed arranged on a per dataset and a per 
tasks basis in Figure 3 and Figure 4 respectively. Initial results suggest that: (1) 
Features learned using BYOL [25] yield very close results to supervised 
learning when transferred to the target task (image classification on ImageNet) 
and (2) The FID distances between ImageNet and the other dataset are higher 
as the datasets are more different both in terms of content and modality, 
shaping roughly three sets, (3) the performance of the features transferred to 
the target task is proportional (to some extent) to the FID distance of the 
learned features of the pretext task with respect to those of the target task. We 
are currently validating these observations by analysing additional target tasks. 

https://github.com/open-mmlab/OpenSelfSup/blob/master/docs/MODEL_ZOO.md
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Figure 3 FIDs between features extracted for pairs of datasets (ImageNet vs X) by 
forwarding images of these datasets to models learned by different pretext-tasks. FIDs 
are normalized by dividing them by the ImageNet vs ImageNet pair. Results for Rotation 
task are removed for the shake of visualization. 

 
Figure 4 FIDs between features extracted for pairs of datasets (ImageNet vs X) by 
forwarding images of these datasets to models learned by different pretext-tasks. FIDs 
are normalized by dividing them by the ImageNet vs ImageNet pair. Results for Rotation 
task are removed for the shake of visualization. Pretext tasks are arranged according to 
their transferred performance (higher accuracy to the right). The last task, Inception, 
stands for the comparison between the features of a supervised Inception model trained 
on ImageNet. 
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