
UNIVERSIDAD AUTÓNOMA DE MADRID
ESCUELA POLITÉCNICA SUPERIOR

Master in Deep Learning for Audio and Video Signal Processing

MASTER THESIS

Learning supervised by synthetic data for Chest
X-ray images

Author: Eric Morales Agostinho
Advisor: Juan Carlos San Miguel Avedillo

September 2022

All rights reserved.

No reproduction in any form of this book, in whole or in part
(except for brief quotation in critical articles or reviews),
may be made without written authorization from the publisher.

© September 5, 2022 by UNIVERSIDAD AUTÓNOMA DE MADRID
Francisco Tomás y Valiente, no 1
Madrid, 28049
Spain

Eric Morales Agostinho
Learning supervised by synthetic data for Chest X-ray images

Eric Morales Agostinho
C\ Francisco Tomás y Valiente Nº 11

PRINTED IN SPAIN

LEARNING SUPERVISED BY
SYNTHETIC DATA FOR CHEST

X-RAY IMAGES

Eric Morales Agostinho
Advisor: Juan Carlos San Miguel Avedillo

Video Processing and Understanding Lab

Departamento de Tecnología Electrónica y de las Comunicaciones

Escuela Politéctnica Superior

Universidad Autónoma de Madrid

June 2021

Trabajo parcialmente financiado por la Consejería de Educación e Investigación de la
Comunidad de Madrid bajo el proyecto SI1/PJI/2019-00414 (Aiding diagnosis by self-

supervised deep learning from unlabeled medical imaging)

Abstract

The use of Artificial Intelligence is changing our way of life. We can find it everywhere, from our

virtual assistant making an appointment for us in a restaurant to algorithms that can diagnose diseases

better and faster than a doctor. The two key problems with this type of technology are, firstly, the

excessive computing power it needs and, secondly, the massive amount of data required to make it

work properly. However, in the case of medical images, the focus of our research, there are even

further difficulties, as we must take into account privacy issues along with the fact that right now, health

organizations are not sharing information at all. The use of synthetic data can provide us with large

datasets without any privacy issues at a reduced cost. To achieve that, we have developed a synthetic

data generator based on Generative Adversarial Networks. Ideally, these artificially generated images

should not contain sensitive personal information while maintaining statistical features similar to the

original images. This way, a machine learning model will be able to learn from it. In our project, we

demonstrate that this approach works with certain caveats: It requires the data to be representative

enough - which in our simplified case it is. But, as the complexity increases, the algorithm struggles

to solve the task. This indicates that the data generated by the GAN does not have enough statistical

power to solve complex problems.

Keywords

Generative Models, Generative Adversarial Networks, GANs, synthetic data, medical images, x-ray,

Unsupervised Domain Adaptation, Transfer Learning, privacy

v

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Project Structure . 3

2 State of the art 5

2.1 Fundamentals . 5

2.2 Synthetic medical images . 9

2.3 Domain Adaptation . 11

3 Datasets 15

3.1 Chexpert . 15

3.2 Chest8 . 17

3.3 Data Analysis . 18

4 Algorithm development 25

4.1 Data Generation . 25

4.2 Domain Adaptation . 30

5 Evaluation 33

5.1 Methodology . 33

5.2 Results of v1: No Finding VS Pneumothorax (binary) . 36

5.3 Results other experiments . 40

6 Conclusions and future work 43

6.1 Conclusions . 43

6.2 Future work . 44

Bibliography 47

vii

Lists

List of Equations

2.1 GAN Discriminator cost function. 6

2.2 GAN Generator cost function. 7

5.1 Recall . 35

5.2 Balanced Accuracy . 35

List of Figures

2.1 Example of a generative model that estimates Gaussian density distribution. 5

2.2 Example of a generative model that generates samples from the model distribution. . . . 6

2.3 GAN framework process. 7

2.4 cGAN and AC-GAN architectures. 8

2.5 Progressive GAN training process. 8

2.6 ProgGAN resolution increase process. 9

2.7 General structure where the GAN is used to remove private information. 10

2.8 Office-31 dataset sample. 12

2.9 Domain Adaptation t-SNE feature representation. 12

3.1 CheXpert classes and subclasses. 16

3.2 Labels’ co-occurrence in ChestX-ray8 dataset. 17

3.3 Different possibilities of Version 1. 20

3.4 Label distribution in CheXpert version 1 with Xs and No Finding = 1. 20

3.5 Label distribution in CheXpert version 1 with Xs and Pneumothorax = 1. 21

3.6 Label distribution in CheXpert version 2 with Xs and Finding = 1. 21

3.7 Only possibility of Version 2. 22

3.8 Label distribution in CheXpert version 3 with Xs and No Finding = 1. 22

3.9 Label distribution in CheXpert version 3 with Xs and Pneumothorax = 1. 22

3.10 Label distribution in CheXpert version 3 with Xs and Pneumonia = 1. 23

3.11 Label distribution in CheXpert version 3 with Xs and Cardiomegaly = 1. 23

3.12 Different possibilities of Version 3. 23

4.1 Data generation examples. 28

ix

4.2 Data generation framework. 28

4.3 Data generation examples per class. 29

4.4 Baseline framework. 31

4.5 Unsupervised Domain Adaptation framework. 32

5.1 Training curves baseline algorithm. 37

List of Tables

2.1 DCAN Results in Office-31 Dataset. 13

3.1 Example of labeller output in CheXpert dataset. 16

3.2 Number of samples per label in CheXpert dataset. 16

3.3 Labels comparison between datasets. 18

3.4 Sample distribution in CheXpert. 24

3.5 Sample distribution in ChestX-ray8. 24

4.1 Data generation benchmarks. 27

4.2 Sample distribution in synthetic dataset. 30

5.1 Baseline parameters SGD optimizer. 33

5.2 ”Baseline improvement” parameters per layer. 34

5.3 ”Baseline improvement” parameters SGD optimizer. 34

5.4 UDA parameters SGD optimizer. 34

5.5 UDA parameters per layer. 35

5.6 Table of technical details of the training and evaluation computer. 35

5.7 Table of Python packages used. 36

5.8 Results supervised. Trained with Synthetic data using version 1 with 0s. 38

5.9 Results supervised. Trained with CheXpert and ChestX-ray8 datasets using version 1

with 0s. 38

5.10 Summary of all results using version 1 with 0s. 40

5.11 Summary of results using version 1 (binary with Xs). 41

5.12 Summary of results using version 2 (No Finding vs All). 41

5.13 Summary of results using version 3 with 0s (four classes). 42

5.14 Summary of results using version 3 with Xs (four classes). 42

x

1
Introduction

1.1 Motivation

According to [Chen et al., 2021], a key challenge for applying AI in the medical field is the represen-

tativeness of the data employed for training AI models. Hence, it becomes essential to look for and to

eliminate biases and errors in the trained models. These biases may be due to differences among the

data captured in different hospitals, demographics (gender, ethnicity...), or simply by the class imbal-

ance that is common in this type of data. In general, we need large datasets so representative data is

less affected by biases. However, such datasets present an increasing privacy concern and therefore,

rules and regulations are implemented to ensure only authorised individuals and organisations may

access to the data.

The above-mentioned issues can be overcomed by using synthetic data, and one of the most

widespread ways to generate such synthetic data are Generative Adversarial Networks (GANs), as

can be seen in [Schütte et al., 2021], the baseline of this research work. However, we could use

any other technique to generate this data, be it another type of generative model such as autoen-

coders [Wan et al., 2017] or even extracting images using medical simulators [Sújar et al., 2019]. Once

we have these synthesised data generated with their corresponding labels, we can apply the dataset

for supervised or self-supervised learning.

For supervised learning using synthetic medical data, it is typical to combine the available real and

synthetic labelled data for increasing the accuracy of the trained model as compared to employing only

real data [Çalli et al., 2021].

Self-supervised learning has been recently proposed in the context of medical imaging to address

the limitations of data availability, annotation and privacy concerns. One type of approaches does self-

supervised learning by training a model using just unlabelled data (or very few labelled data and the

rest of the data being unlabelled) [Gazda et al., 2021]. This requires a pretext task (e.g. predict a given

rotation), a task which if a model is trained to solve will also learn visual features that can be adapted to

solve the real task. In a similar context of few labelled data, other alternative less explored is to perform

Unsupervised Domain Adaptation (UDA). UDA may be applied as a two stage approach by doing fully

1

Introduction

supervised training using only synthetic images and then performing domain adaptation with real data

without annotations [Csurka, 2017].

These unsupervised learning techniques differ from supervised learning in that supervised learning

uses real data that is all annotated, typically by a human. In contrast to unsupervised learning, which, as

already explained, its labels are generated automatically using pretext tasks (self-supervised learning)

or adapted from synthetic data (unsupervised domain adaptation).

1.2 Goals

The main objective of this thesis is to explore the use of synthetic data for self-supervised learning

based on convolutional neural networks in the context of chest X-ray imaging [Çalli et al., 2021]. This

objective is divided into the following stages:

1.– Study the available datasets for chest X-ray images [Irvin et al., 2019,Wang et al., 2017].

2.– Analyse the existing approaches to generate synthetic chest X-ray images [Schütte et al.,

2021].

3.– Train and adapt a selected approach for generating synthetic chest X-ray images for

different classes (i.e. pathologies).

4.– Analyse the existing approaches for unsupervised domain adaptation (i.e. domain trans-

fer) from synthetic to real data for classification tasks [Csurka, 2017].

5.– Train and adapt a selected approach for unsupervised domain adaptation from synthetic

to real data for classification tasks.

6.– Generate a large dataset of synthetic data based on the model developed in stage (3)

with a dataset for chest X-ray images [Irvin et al., 2019,Wang et al., 2017].

7.– Study the utility of the generated synthetic data to do self-supervised learning by un-

supervised domain adaptation based on synthetic data. This utility will be measured by

carrying out experiments and ablation studies using the X-ray dataset not employed for the

synthetic data generated, and later comparing it with self-supervised approaches [Gazda

et al., 2021].

2 Learning supervised by synthetic data for Chest X-ray images

1.3. Project Structure

1.3 Project Structure

Chapter 1. Introduction. In this chapter, we describe the problem around which the whole

project revolves, the motivation for the work and the structure of the project.

Chapter 2. State of the art. In this chapter, we collect the information that has served as a

theoretical basis for this work. We analyse the latest advances in Generative Models, the

generation of synthetic medical images and the use of Unsupervised Domain Adaptation in

classification problems.

Chapter 3. Datasets. In this chapter, we present the datasets used, as well as an exhaustive

analysis required to successfully carry out the project.

Chapter 4. Algorithm. In this chapter, we present the different algorithms used in each of

the two parts of our work, synthetic data generation and Unsupervised Domain Adaptation

(UDA).

Chapter 5. Evaluation. In this chapter, we detail the experiments carried out about the algo-

rithms used, as well as the results obtained in each of them.

Chapter 5. Conclusions and future work. In this chapter, we summarize the conclusions of

this work with a brief review of possible improvements that can be further investigated in the

future.

Eric Morales Agostinho 3

2
State of the art

This chapter will give a short introduction to the different key points behind this work, from an overview

of generative models to the use of synthetic medical images in machine learning and the unsupervised

domain adaptation. It is divided into three sections. First, one dedicated to the fundamental theory

needed to understand the project, basic concepts about Generative Models. Then one section explains

the actual work related to the generation of synthetic medical images. And finally a section dedicated

to explaining what is Unsupervised Domain Adaptation and why it is interesting in this project.

2.1 Fundamentals

2.1.1 Generative models

In order to create synthetic data we will use a type of model called “generative model”, specifically

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]. All the content of this section is

based on the NIPS tutorial [Goodfellow, 2017].

The term refers to any model that uses a train set that follows a distribution ρdata learns how to

estimate that distribution, resulting in a probability distribution ρmodel. There are two types of generative

models, the ones that estimates ρmodel explicitly (Figure 2.1) and the ones that are able to generate

samples from ρmodel (Figure 2.2). GANs can be both but are focused primarily on the second one,

sample generation.

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples

Figure 1: Some generative models perform density estimation. These models take a
training set of examples drawn from an unknown data-generating distribution pdata
and return an estimate of that distribution. The estimate pmodel can be evaluated for
a particular value of x to obtain an estimate pmodel(x) of the true density pmodel(x).
This figure illustrates the process for a collection of samples of one-dimensional data
and a Gaussian model.

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples
Figure 2: Some generative models are able to generate samples from the model distri-
bution. In this illustration of the process, we show samples from the ImageNet (Deng
et al., 2009, 2010; Russakovsky et al., 2014) dataset. An ideal generative model would
be able to train on examples as shown on the left and then create more examples from
the same distribution as shown on the right. At present, generative models are not yet
advanced enough to do this correctly for ImageNet, so for demonstration purposes this
figure uses actual ImageNet data to illustrate what an ideal generative model would
produce.

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.key

The video was recorded by the NIPS foundation and should be made avail-
able at a later date.

Generative adversarial networks are an example of generative models. The
term “generative model” is used in many different ways. In this tutorial, the
term refers to any model that takes a training set, consisting of samples drawn
from a distribution pdata, and learns to represent an estimate of that distribution
somehow. The result is a probability distribution pmodel. In some cases, the
model estimates pmodel explicitly, as shown in figure 1. In other cases, the
model is only able to generate samples from pmodel, as shown in figure 2. Some
models are able to do both. GANs focus primarily on sample generation, though
it is possible to design GANs that can do both.

2

Figure 2.1: Example of a generative model that estimates Gaussian density distribution [Goodfellow,

2017].

The GANs are designed to solve many of other generative models problems:

5

State of the art

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples

Figure 1: Some generative models perform density estimation. These models take a
training set of examples drawn from an unknown data-generating distribution pdata
and return an estimate of that distribution. The estimate pmodel can be evaluated for
a particular value of x to obtain an estimate pmodel(x) of the true density pmodel(x).
This figure illustrates the process for a collection of samples of one-dimensional data
and a Gaussian model.

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples
Figure 2: Some generative models are able to generate samples from the model distri-
bution. In this illustration of the process, we show samples from the ImageNet (Deng
et al., 2009, 2010; Russakovsky et al., 2014) dataset. An ideal generative model would
be able to train on examples as shown on the left and then create more examples from
the same distribution as shown on the right. At present, generative models are not yet
advanced enough to do this correctly for ImageNet, so for demonstration purposes this
figure uses actual ImageNet data to illustrate what an ideal generative model would
produce.

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.key

The video was recorded by the NIPS foundation and should be made avail-
able at a later date.

Generative adversarial networks are an example of generative models. The
term “generative model” is used in many different ways. In this tutorial, the
term refers to any model that takes a training set, consisting of samples drawn
from a distribution pdata, and learns to represent an estimate of that distribution
somehow. The result is a probability distribution pmodel. In some cases, the
model estimates pmodel explicitly, as shown in figure 1. In other cases, the
model is only able to generate samples from pmodel, as shown in figure 2. Some
models are able to do both. GANs focus primarily on sample generation, though
it is possible to design GANs that can do both.

2

Figure 2.2: Example of a generative model that generates samples from the model distribution

[Goodfellow, 2017]. Images extracted from ImageNet dataset [Deng et al., 2009, Deng et al., 2010,

Russakovsky et al., 2015].

• They are able to generate samples in parallel.

• The generator architecture has almost no restrictions.

• They do not need Markov chains.

• They do not need variational bound.

• The results generated by GANs are subjectively better.

On the other hand, the GANs have a new disadvantage, the training is more difficult because it

requires finding the Nash equilibrium [Ratliff et al., 2013], which is not as easy as optimizing a cost

function.

Generative Adversarial Networks

The idea of the GANs can be represented as a MiniMax game [Rivest, 1987]. The two players are,

on one hand, the generator, which is creating samples trying to follow the original distribution of the

training date. On the other hand, the discriminator is trying to detect if the sample received is real

(from the dataset) or fake (made by the generator). The generator is trained with the aim of fooling

the discriminator and the discriminator is trained as a traditional binary classifier (real or fake) using

supervised learning. More detail about the process is in Figure 2.3.

The two players can be represented as functions, G is the generator, that takes z as input and

depends on the parameters θ(G). D is the discriminator, that takes as input x or G(z) and depends on

the parameters θ(D).

The cost function depends on the parameters of both players, θ(D) and θ(G). As the discriminator

is being trained as a traditional binary classifier we can use the standard cross-entropy function as cost

(Equation 2.1) but using two sources of data, one is the dataset, always with label 0, and the other is

the generator, always with label 1. The objective of the discriminator is to minimize the cost function.

J (D)(θ(D), θ(G)) = −1

2
Ex∼pdata

logD(x)− 1

2
Ezlog(1−D(G(x))). (2.1)

6 Learning supervised by synthetic data for Chest X-ray images

2.1. Fundamentals

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

Figure 12: The GAN framework pits two adversaries against each other in a game.
Each player is represented by a differentiable function controlled by a set of parameters.
Typically these functions are implemented as deep neural networks. The game plays
out in two scenarios. In one scenario, training examples x are randomly sampled from
the training set and used as input for the first player, the discriminator, represented
by the function D. The goal of the discriminator is to output the probability that its
input is real rather than fake, under the assumption that half of the inputs it is ever
shown are real and half are fake. In this first scenario, the goal of the discriminator is
for D(x) to be near 1. In the second scenario, inputs z to the generator are randomly
sampled from the model’s prior over the latent variables. The discriminator then
receives input G(z), a fake sample created by the generator. In this scenario, both
players participate. The discriminator strives to make D(G(z)) approach 0 while the
generative strives to make the same quantity approach 1. If both models have sufficient
capacity, then the Nash equilibrium of this game corresponds to the G(z) being drawn
from the same distribution as the training data, and D(x) = 1

2
for all x.

19

Figure 2.3: GAN framework process. D is the discriminator and G the generator, x are training

examples and z is random noise. The goal of the discriminator is to predict zero when the sample

has been generated by G (D(G(z)) ≃ 0) and one if it is real (D(x) ≃ 1). The goal of the generator is

to try to make the discriminator predict one when the sample has been generated by G (D(G(z)) ≃ 1)

[Goodfellow, 2017].

As mentioned, a GAN is simply a MiniMax game between the discriminator and the generator, that

type of games are also called zero-sum game, where the sum of all player scores should be zero. With

this information, we can conclude that the cost function of the generator is simply the opposite of the

discriminator (Equation 2.2).

J (G) = −J (D) (2.2)

About the Nash equilibria [Ratliff et al., 2013], in this context and according to [Goodfellow, 2017], a

Nash equilibrium is the tuple (θ(D), θ(G)) where players are tied, which is a local minimum of J(G) with

respect to θ(G) and a local minimum of J(D) with respect to θ(D).

Conditional GANs (cGAN)

Presented by [Denton et al., 2015], this model is based on a normal GAN structure but incorporates

class labelling of both the generator and the discriminator. More detail about the structure in the Figure

2.4.

Eric Morales Agostinho 7

State of the art

AC-GANs

Based on the cGAN architecture, [Odena et al., 2017] proposed a new one with the main difference

that the discriminator does not receive the class label, it is trained with an additional classification loss

to predict it. More detail in the Figure 2.4.

G DGAN z
fake images

Ladv

real images

DiscriminatorGeneratorNoise

Figure 2: Simplified architecture of a GAN [2]. Given noise in-
put z randomly sampled from a normal distribution, the generator
is trained to produce images to fool the discriminator. The discrim-
inator is trained to distinguish between real and generated images.

textual description for conditioning, and commonly used
datasets by the T2I community.

2.1. Generative Adversarial Networks

The original GAN proposed in [2] consists of two neu-
ral networks: a generator network G(z) with noise z ∼ pz
sampled from a prior noise distribution, and a discrimina-
tor network D(x), where x ∼ pdata are real, and x ∼ pg are
generated images, respectively. Training is formulated as
a two-player game in which the discriminator is trained to
distinguish between real and generated images, while the
generator is trained to capture the real data distribution
and produce images to fool the discriminator. See Figure 2
for an illustration of the GAN architecture.

More formally, as in [2], the training can be defined
as a two-player minimax game with the value function
V (D,G), where the discriminator D(x) is trained to maxi-
mize the log-likelihood it assigns to the correct class, while
the generator G(z) is trained to minimize the probabil-
ity being classified as fake by the discriminator log(1 −
D(G(z)), see Equation 1. The loss function is indicated as
Ladv in our figures.

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)]

+ Ez∼pz
[log(1−D(G(z))]

(1)

2.2. Conditional GANs

Although generating new, realistic samples is interest-
ing, gaining control over the image generation process has
high practical value. Mirza et al. proposed the conditional
GAN (cGAN) [14] by incorporating a conditioning variable
y (e.g., class labels) at both the generator and discrimina-
tor to specify which MNIST [26] digit to produce. See
Figure 3 for an illustration. In their experiments, z ∼ pz
and y are inputs to a Multi-Layer Perceptron (MLP) net-
work with one hidden layer, thereby forming a joint hidden
representation for the generator. Analogously, for the dis-
criminator, an MLP combines images and labels. As given
in [14], Equation 1 becomes Equation 2.

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x|y)]

+ Ez∼pz
[log(1−D(G(z|y))]

(2)

G DcGAN
image

z

G DAC-GAN
image

z
LC

Ladv

Ladv

y

y

y

Figure 3: Simplified cGAN [14] and AC-GAN [27] architectures. In
cGAN [14], the class label is input to both generator and discrimi-
nator networks. In AC-GAN [27], the discriminator is trained with
an additional auxiliary classification loss. Note that we are omitting
to depict real images as input to the discriminator in the following
figures for brevity.

A number of variants extended the cGAN objective
function to improve conditional GAN training. For ex-
ample, in AC-GAN [27] the authors proposed adding an
auxiliary classification loss to the discriminator, indicated
as LC in Figure 3.

2.3. Encoding Text

Creating an embedding from textual representations
that is useful for the network in terms of a condition-
ing variable is not trivial. Reed et al. [28] obtain
the text encoding of a textual description by using a
pre-trained character-level convolutional recurrent neural
network (char-CNN-RNN). The char-CNN-RNN is pre-
trained to learn a correspondence function between text
and image based on the class labels. This leads to visually
discriminative text encodings. During training, additional
text embeddings were generated by simply interpolating
between the embeddings of two training captions. The
authors also showed that traditional text representations
such as Word2Vec [29] and Bag-of-Words [30] were less
effective. TAC-GAN [31] employed Skip-Thought vectors
[32].

Instead of using the fixed text embedding obtained by
a pre-trained text encoder, the authors of StackGAN [33]
proposed Conditioning Augmentation (CA) to randomly
sample the latent variable from a Gaussian distribution
where the mean and covariance matrix are functions of
the text embedding. The Kullback-Leibler (KL) diver-
gence between a standard Gaussian distribution and the
conditioning Gaussian distribution is used as a regular-
ization term during training. This technique yields more
training pairs and encourages smoothness over the con-
ditioning manifold. Many of the following T2I methods
adopted this technique. Similar to CA, in [34] the authors
proposed Sentence Interpolation (SI), a deterministic way
to provide a continuous and smooth embedding space dur-
ing training.

The authors of AttnGAN [35] replaced the char-CNN-
RNN with a bi-directional LSTM (BiLSTM) [36] to ex-
tract feature vectors by concatenating the hidden states
of the BiLSTM to form a feature matrix for each word.
The global sentence vector is formed by concatenating the
last hidden states. The text encoder is obtained by pre-
training a Deep Attentional Multimodal Similarity Model

3

Figure 2.4: cGAN and AC-GAN architectures. [Frolov et al., 2021]

Progressive GANs

One of the main challenges for GANs is the generation of high-resolution images, which is easier to

classify between real and generated images using higher resolutions, with a lot of detail [Odena et al.,

2017]. To address this problem, [Karras et al., 2018] proposes the concept of Progressive Generative

Adversarial Network, a training methodology for GANs based on the idea of progressively increasing

the number of layers during the training process. In this way, in the beginning, the network learns simple

structures of plain objects, where a smaller layer size is needed, and at the end learns the textures and

details, where a bigger layer size is needed. The structure can be seen in the Figure 2.5.

Published as a conference paper at ICLR 2018

4x4

G

D

4x4

8x8

Reals

4x4

4x4

Reals

8x8

4x4

Latent

Reals

4x4

…

Training progresses

LatentLatent

1024x1024

1024x1024

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here N ×N refers to convolutional layers operating on N × N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024× 1024.

Another benefit is the reduced training time. With progressively growing GANs most of the itera-
tions are done at lower resolutions, and comparable result quality is often obtained up to 2–6 times
faster, depending on the final output resolution.

The idea of growing GANs progressively is related to the work of Wang et al. (2017), who use mul-
tiple discriminators that operate on different spatial resolutions. That work in turn is motivated by
Durugkar et al. (2016) who use one generator and multiple discriminators concurrently, and Ghosh
et al. (2017) who do the opposite with multiple generators and one discriminator. Hierarchical
GANs (Denton et al., 2015; Huang et al., 2016; Zhang et al., 2017) define a generator and discrimi-
nator for each level of an image pyramid. These methods build on the same observation as our work
– that the complex mapping from latents to high-resolution images is easier to learn in steps – but
the crucial difference is that we have only a single GAN instead of a hierarchy of them. In contrast
to early work on adaptively growing networks, e.g., growing neural gas (Fritzke, 1995) and neuro
evolution of augmenting topologies (Stanley & Miikkulainen, 2002) that grow networks greedily,
we simply defer the introduction of pre-configured layers. In that sense our approach resembles
layer-wise training of autoencoders (Bengio et al., 2007).

3 INCREASING VARIATION USING MINIBATCH STANDARD DEVIATION

GANs have a tendency to capture only a subset of the variation found in training data, and Salimans
et al. (2016) suggest “minibatch discrimination” as a solution. They compute feature statistics not
only from individual images but also across the minibatch, thus encouraging the minibatches of
generated and training images to show similar statistics. This is implemented by adding a minibatch
layer towards the end of the discriminator, where the layer learns a large tensor that projects the
input activation to an array of statistics. A separate set of statistics is produced for each example in a
minibatch and it is concatenated to the layer’s output, so that the discriminator can use the statistics
internally. We simplify this approach drastically while also improving the variation.

Our simplified solution has neither learnable parameters nor new hyperparameters. We first compute
the standard deviation for each feature in each spatial location over the minibatch. We then average
these estimates over all features and spatial locations to arrive at a single value. We replicate the
value and concatenate it to all spatial locations and over the minibatch, yielding one additional (con-
stant) feature map. This layer could be inserted anywhere in the discriminator, but we have found it
best to insert it towards the end (see Appendix A.1 for details). We experimented with a richer set
of statistics, but were not able to improve the variation further. In parallel work, Lin et al. (2017)
provide theoretical insights about the benefits of showing multiple images to the discriminator.

3

Figure 2.5: Progressive GAN training process. Starting having a low resolution of 4x4 that is being

increased during the training process [Karras et al., 2018].

On each step the resolution is increased (doubled) by adding new bigger layers smoothly, fading

the existing ones with it. This process is controlled by a parameter α that starts from 0 and linearly

increases to 1. More detail about these processes is in the Figure 2.6.

8 Learning supervised by synthetic data for Chest X-ray images

2.2. Synthetic medical images
Published as a conference paper at ICLR 2018

16x16G

D

16x16

toRGB

fromRGB

16x16

16x16

toRGB

fromRGB

32x32

32x32
2x

0.5x

16x16

16x16

32x32

32x32

2x

+

toRGB

fromRGB

+

toRGB

0.5x

⍺

⍺1-⍺

1-⍺

(a) (b) (c)

0.5x
fromRGB

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 × 16 images (a) to 32 × 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight α increases linearly from 0 to 1. Here 2× and 0.5× refer to doubling
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.
The toRGB represents a layer that projects feature vectors to RGB colors and fromRGB does
the reverse; both use 1 × 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.

Alternative solutions to the variation problem include unrolling the discriminator (Metz et al., 2016)
to regularize its updates, and a “repelling regularizer” (Zhao et al., 2017) that adds a new loss term
to the generator, trying to encourage it to orthogonalize the feature vectors in a minibatch. The
multiple generators of Ghosh et al. (2017) also serve a similar goal. We acknowledge that these
solutions may increase the variation even more than our solution – or possibly be orthogonal to it –
but leave a detailed comparison to a later time.

4 NORMALIZATION IN GENERATOR AND DISCRIMINATOR

GANs are prone to the escalation of signal magnitudes as a result of unhealthy competition between
the two networks. Most if not all earlier solutions discourage this by using a variant of batch nor-
malization (Ioffe & Szegedy, 2015; Salimans & Kingma, 2016; Ba et al., 2016) in the generator, and
often also in the discriminator. These normalization methods were originally introduced to elimi-
nate covariate shift. However, we have not observed that to be an issue in GANs, and thus believe
that the actual need in GANs is constraining signal magnitudes and competition. We use a different
approach that consists of two ingredients, neither of which include learnable parameters.

4.1 EQUALIZED LEARNING RATE

We deviate from the current trend of careful weight initialization, and instead use a trivial N (0, 1)
initialization and then explicitly scale the weights at runtime. To be precise, we set ŵi = wi/c,
where wi are the weights and c is the per-layer normalization constant from He’s initializer (He
et al., 2015). The benefit of doing this dynamically instead of during initialization is somewhat
subtle, and relates to the scale-invariance in commonly used adaptive stochastic gradient descent
methods such as RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015). These
methods normalize a gradient update by its estimated standard deviation, thus making the update
independent of the scale of the parameter. As a result, if some parameters have a larger dynamic
range than others, they will take longer to adjust. This is a scenario modern initializers cause, and
thus it is possible that a learning rate is both too large and too small at the same time. Our approach
ensures that the dynamic range, and thus the learning speed, is the same for all weights. A similar
reasoning was independently used by van Laarhoven (2017).

4

Figure 2.6: ProgGAN resolution increase process [Karras et al., 2018].

cpD-GAN

Focusing on the field of the project, the use of medical images, we have discovered a new structure,

cpD-GAN. Proposed by [Schütte et al., 2021] it is a model developed just to improve the performance

on his benchmark. This model is based on the prog-GAN explained above but with some improve-

ments. The main difference, influenced by StyleGAN [Karras et al., 2019, Karras et al., 2020], is that

they dropped the progressive growth, that way it is possible to experiment with different architectures.

The best finding was the use of standard residual connections in the discriminator and output skip

connections in the discriminator. Also, is important to note that, as a CondictionalGAN, it allows us to

generate images "a la carte", selecting the classes as input.

Unfortunately, they don’t give much detail about this model in the article, only that it improves per-

formance over ProgGAN, so part of our work will be to evaluate it and try to understand it in more

detail.

2.2 Synthetic medical images

According to [Chen et al., 2021]. As the use of AI in the medical field expands, so do regulations and

clinical analyses. This type of analysis is essential to look for and eliminate biases and errors in the

models. These biases may have been caused by differences between teams from different hospitals,

or simply by the class imbalance that is common in this type of dataset. In general, we need large

datasets, with more representative data and avoiding ethical biases (gender, ethnicity...).

The use of synthetic medical data is increasing to alleviate the lack of real medical annotated data.

In other fields, for example, self-driving cars, simulators are being used to simulate accidents or things

that are difficult to capture in real life. However, as with everything else, there are good and bad uses

Eric Morales Agostinho 9

State of the art

we can make of this technology, for example, people are trying to make Deep Fakes spread fake news

and misinform the population [Chesney and Citron, 2019].

Additionally, if we talk in general about the use of AI in the medical field, we can see that it is growing

all the time. For example, the United States Food and Drug Administration (FDA) is close to approving

an AI-based software as a medical device (AI-SaMD), used for example to detect atrial fibrillation [Food

et al., 2019].

One of the most promising areas of AI for improvement in this field is generative modelling, in

particular GANs, as can be seen in [Schütte et al., 2021], the baseline of this research work.

2.2.1 Medical image generation

specific domains, with dataset-dependent adaptations, without
providing a comprehensive evaluation of how changes within and
across data modalities impact different GAN model performances
for synthetic data sharing. Other works such as39 and40 are less
related to data sharing restrictions and instead focus on utilising
GANs for image-to-image translations within the medical domain.
This idea has also been extended to semi-supervised settings
where lower complexity images are synthesised first, before
translating towards the higher complexity space41.
Inspired by these domain-specific advancements we aim to

establish a benchmark on synthetic medical imaging data
generation capabilities. To the best of our knowledge, there is
currently no work focused on providing a comprehensive bench-
mark analysis for the generation of synthetic medical images
across different GAN architectures and data modalities. Our study
offers guidelines for the use of GAN models to fully synthesise
datasets as a potentially viable approach to privacy-preserving
data sharing, as illustrated in Fig. 1. We make the following
contributions:

● We develop an open benchmark to analyse the generation of
synthetic medical images when varying the number of label
combinations, the number of samples per label combination,
and the spatial resolution level present in the dataset.

● We present valuable guidelines for the effective generation of
medical image datasets by evaluating our open-source
benchmark on a reference GAN model and our newly
proposed GAN architecture for two different data modalities.

● We additionally analyse privacy considerations, assess the
feature importance of predictive models trained on the
synthetic datasets, analyse visual artefacts at higher resolu-
tions and finally conduct a large-scale reader study in which
trained radiologists discriminate between real and synthetic
medical images.

RESULTS
Overview of approach
Both datasets consist of binary multi-label classes. Each chest
X-ray image can have a combination of the following 13 labels:
enlarged cardiomediastinum, cardiomegaly, lung opacity, lung
lesion, oedema, consolidation, pneumonia, atelectasis, pneu-
mothorax, pleural effusion, pleural other, fracture, support device
or the no finding class. The brain CT scans can consist of a
combination of five different haemorrhage types: epidural,
subarachnoid, subdural, intraparenchymal and intraventricular or
the no finding class.
We randomly split each patient cohort into training, validation,

and test set within strata of radiology findings, before filtering the
available data for each benchmark setting. We developed all GAN
models on the training datasets and stopped GAN training when
the quality between real and synthetic images converged, as
measured with the Fréchet inception distance (FID) score42. Next,
we generated the synthetic datasets for the train, validation, and
test folds by conditioning on the labels present in the respective

data folds. This means that after GAN training and inference we
have a real and synthetic dataset for each benchmark setting with
equivalent sizes and label combinations in all folds. In theory, a
trained GAN can be used to generate unlimited amounts of data,
but we want the real and synthetic folds to be equivalent for a fair
comparison.
Each classifier is trained on either the real or the synthetic

training data fold, meaning that synthetic images are pre-
computed and not generated on a batch-wise basis. In all
settings, we used a pre-trained densenet-121 CNN as a predictive
model, with the mean area under the receiver operating
characteristics curve over all labels (AUC) as the evaluation metric.
For each classifier, we stopped training when the validation AUC
converged. After the real predictive model is trained on the real
dataset and the synthetic predictive model is trained on the
synthetic dataset, we evaluated both on the separate, real
data test fold to compute the difference in performance
AUCreal � AUCsyn.
We repeated all experiments multiple times with varying

random initialisation of the deep learning systems, allowing us
to perform statistical tests on whether the distribution of AUCreal �
AUCsyn scores differs at different benchmark settings. Additionally,
we compared the predictive models’ feature importance when
trained on either the real or the synthetic datasets. We addressed
privacy concerns by analysing differences between synthetic
images and the most closely matching nearest-neighbour images
from the entire training dataset. Finally, we performed a large-
scale reader study in which we asked trained radiologists to label a
mixture of real and generated images.

Model performance
To accurately assess the potential of synthetic data, we analysed
two model architectures across two different datasets for our
benchmark. The prog-GAN model refers to the progressive GAN as
a reference model, as it is still commonly used for medical image
generation32,36. The cpD-GAN refers to our improved model that
we specifically developed for this benchmark. To assess the
generalisation capabilities, we did not fine-tune across different
benchmark settings, only when increasing the resolution, we
make the necessary changes to the network architectures.
Up to a spatial resolution of 128 × 128 pixels, the prog-GAN

achieved an average AUCreal � AUCsyn score of 0.0495 (±0.0276)
across all settings on the chest radiograph dataset and 0.1367
(±0.0324) across all brain scans’ experiments. These scores were
substantially improved with the cpD-GAN that achieved 0.0206
(±0.0100) on the chest X-ray settings and 0.0650 (±0.0198) on the
brain haemorrhage dataset experiments.
We evaluated the model performance across three benchmark

dimensions, detailed in Table 1. First, we varied the number of
unique binary label combinations (which we also refer to as
number of classes) included in the dataset. Next, we fixed the
present classes and assessed how changes in the number of
samples for each group of findings impacted performance. While
we evaluated the first two benchmark settings at a resolution of
32 × 32 pixels, we finally analysed how increasing the resolution to
64 × 64 and 128 × 128 pixels affected our scores. Due to the
substantial computational demand at high spatial resolution, we
only evaluate the cpD-GAN at 256 × 256 pixels for brain CT scans
and 256 × 256 and 512 × 512 pixels for chest X-rays. We only
performed changes across a single benchmark dimension at a
time to ensure no confounding factors could impact training.

Impact of number of classes
The classification performance on both real and synthetic data
increased when we lowered the number of unique present
classes. We reason that the complexity of the predictive task
decreases with fewer label combinations, resulting in higher

Fig. 1 Synthetic medical imaging dataset generation to overcome
data sharing barriers. We train our GAN models with real medical
imaging data, to generate the corresponding synthetic images. The
synthetic dataset ideally no longer contains private information
about individual patients while in aggregate, maintaining the real
training cohort’s statistical properties.

A. DuMont Schütte et al.

2

npj Digital Medicine (2021) 141 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

Figure 2.7: General structure where the GAN is used to remove private information [Schütte et al.,

2021].

The paper [Schütte et al., 2021] focuses on the idea of removing private information of the patients

using synthetic images, the author says that the synthetic images ideally have, in aggregate, similar

statistical properties to those of a source dataset but do not contain sensitive personal information

(Figure 2.7).

About the models, they use a ProgGAN (section 2.1.1 and [Karras et al., 2018]) and propose cPD-

GAN (section 2.1.1), an architecture based on ProgGAN.

Moreover, one of the best contributions of this paper is the benchmark they propose. They provide

all the implementation with which you can test the different models they propose and replicate all the

experiments. We will talk about that in detail in the section 4.1.

The training of the models can be done using this benchmark, and it is important to note that the

training is automatically stopped when the quality improvement has converged, that is measured using

the Fréchet Inception Distance (FID) score [Heusel et al., 2017].

10 Learning supervised by synthetic data for Chest X-ray images

2.3. Domain Adaptation

2.3 Domain Adaptation

In the context of machine learning, domain adaptation is seen as a special case of transfer learning.

Where, transfer learning is the broader research field focused on training a model on a source domain

or task in order to extrapolate to a different but related target domain or task, where either the tasks or

domains (or both) differ.

Following the notations of [Pan and Yang, 2010]: Let D be a domain, composed of a d-dimensional

feature space X ∈ Rd with a marginal probability distribution P (X). Then let T be a task defined by

the ground truth space Y and the conditional probability distribution P (Y |X), where X ∼ X and Y ∼ Y
are random variables. In the context of computer vision, x ∈ X is typically an RGB image and y ∈ Y is

the ground truth of x. P (Y |X) can be inferred from X, {x1, ..., xn} of X ∼ X, with their corresponding

labels Y, {y1, ..., yn} from Y ∼ Y in a supervised manner.

Transfer Learning is the scenario where two different domains or tasks can be distinguished: Ds =

{Xs, P (Xs)},Ts = {Y s, P (Y s|Xs)} the source domain, and Dt = {Xt, P (Xt)}, Tt = {Y t, P (Y t|Xt)}
the target domain. When Ds ̸= Dt or Ts ̸= Tt, the models trained on Ds tend to have a drop in perfor-

mance when tested on Dt or are not applicable if Ts ̸= Tt.

Based on these definitions, [Pan and Yang, 2010] categorizes different transfer learning scenarios

into: Inductive Transfer Learning, Transductive Transfer Learning and Unsupervised Transfer Learning.

Inductive Transfer Learning refers to having different source and target tasks. It requires some labeled

target samples for the model to extrapolate to the target domain. This is the most common scenario in

computer vision, where models pre-trained for image classification on Imagenet [Deng et al., 2009] are

used to extrapolate to different tasks such as object detection or semantic segmentation. Transductive

Transfer Learning is the scenario where source and target tasks are the same, while the source and the

target domains are different. Domain adaptation is an special case of Transductive Transfer Learning

where source and target data representations are different but both share the same task. Finally,

unsupervised Transfer Learning similar to Transductive Transfer Learning the target task is different but

related to the source task. However, unsupervised transfer learning focuses on solving unsupervised

tasks, such as clustering and dimensionality reduction.

On this project we will focus on domain adaptation methods, which according to this classification

belong to transductive transfer learning solutions, i.e. different target (real) and source (synthetic) data

but we will keep the same task (in this case classification), Ts = Tt.

Eric Morales Agostinho 11

State of the art

2.3.1 Unsupervised Domain Adaptation

Domain Adaptation (DA) can be divided into supervised and unsupervised domain adaptation depend-

ing on the availability of target labels. Our focus in this work is Unsupervised Domain Adaptation (UDA).

To give a simple example of this UDA concept we can use the Office-31 dataset [Koniusz et al.,

2017]. A dataset that provides us with images of products in three different domains, one of them is

directly using images from Amazon, another one are photos taken with a professional DSLR camera

and the last ones are photos taken with a webcam (Figure 2.8. The objective is to train a model

using for example the Amazon images, which are easier to get already labelled and this model works

with images taken by a camera without labelling. This is an example where Unsupervised Domain

Adaptation is used.

Figure 2.8: Office-31 dataset sample [Koniusz et al., 2017].

DCAN

Typically DA is performed by aligning features between images of both domains. By aligning the final

features, weights throughout the network are optimized to produce domain-agnostic features. However,

DCAN [Li et al., 2020] argues that alignment of low level features can reduce the network capabilities on

the target domain, thus, they propose to employ attention throughout the network to provide generality

while maintaining specificity

DCANDANResNet mean variance
0

0.5

1

1.5

La
ye

r R
es

po
ns

e

H1(xt)
H1(xt)
ΔH1(xt)

H2(xt)
H2(xt)
ΔH2(xt)

(b) (d)(a) (c)

︿ ︿

Figure 3: (Best viewed in color.) The t-SNE visualizations
of (a) ResNet, (b) DAN and (c) DCAN on task A→W of
Office-31, where blue points are source domain data and red
points are target domain data.

stage4
stage3

stage2

stage1

1024 20480 512256

0.00 0.04 0.08 0.12 0.16 0.20

(a) Attention Value Difference

0 2048512256 1024
Channel Index

Office-Home Task: Ar→Cl

Office-31 Task: A→W

(b) Attention Difference Comparison

Figure 4: (a) The heat-map of attention value difference be-
tween source and target in a trained DCAN on task Ar→Cl
(Office-Home). The color of each vertical line represents the
degree of attention difference across domains; (b) Attention
difference comparison between task A→W (Office-31) and
task Ar→Cl (Office-Home) at stage4.

the performance over “DCAN (w/o Le)” , testifying useful-
ness of entropy minimization principle for DA. It is can be
observed that the adaptation performance of “DCAN (w/o
CA)” suffers a degradation of 2.0%, manifesting the impor-
tance of the proposed channel attention mechanism to ex-
plore the critical low-level domain-dependent knowledge.
Feature Visualization: Figure 3 show the t-SNE (Maaten
and Hinton 2008) embedding of feature representations
learned by several methods, in which each category is rep-
resented as a cluster and domains have different colors. In
ResNet-50, the source and target domains are totally mis-
matched. In DAN, categories are not aligned very well be-
tween domains. However, DCAN shows greater ability of
making inter-class separated and intra-class clustered.
Domain Conditioned Channel Attention Analysis: Intu-
itively, the proposed domain conditioned channel attention
mechanism can facilitate learning domain-specific convo-
lutional features by increasing the sensitivity to informa-

tive channels and suppressing the useless ones. To provide
a clearer picture about the behaviour, we study the channel
attention values of source and target domains.

In ResNet-50, the convolutional layers gradually increase
the channel size of the input images from 3 to 2048. We
compute the average attention values for all the source and
target samples in the last domain conditioned channel atten-
tion module in each stage (immediately prior to downsam-
pling). We refer to each stage as stage 1, 2, 3 and 4 with the
channel numbers as 256, 512, 1024 and 2048, respectively.
Specifically, in each stage, we denote convolutional chan-
nel attention values of source and target as vs and vt. Then
for the m-th channel, the value of |vms − vmt | indicates the
excitation difference of the channel from source and target.

Figure 4(a) shows the heat-map of attention difference
between source and target in each stage. The darker the
color, the larger the attention value difference across do-
mains. We observe that the attention difference of the first
three stages is obviously smaller than that of the stage 4,
since the color of the first three stages are much brighter.
Meanwhile, as the number of channels increases, the color
becomes darker. The above observations indicate that the
source and target networks extract more general low-level
features in the early stages of convolutional layers, while
they extract more domain-specific features in the later stages
of convolutional layers. This observation is similar to the
conclusion in (Yosinski et al. 2014), and could provide us
new insights to design more powerful deep convolutional
structure for DA. Therefore, completely sharing convolu-
tional layers across two domains might be improper, which
verifies our argument that we should build weakly-shared
convolutional structures.

Similar to the previous calculations, Figure 4(b) illustrates
the attention difference comparison between task A→W
of Office-31 and task Ar→Cl of Office-Home at stage4.
Clearly, the figure in the bottom is more darker than the
upper one, which indicates larger channel attention value
difference for the harder task Ar→Cl. This further proves
our statement that convolutional features should be more
domain-specific due to larger domain discrepancy.

Conclusion

In this paper, we presented a Domain Conditioned Adap-
tation Network (DCAN) to simultaneously learn domain-
specific features in convolutional stage and effectively mit-
igate the domain mismatch in task-specific layers. Our de-
signed domain conditioned channel attention module could
enrich domain-specific knowledge in low-level stage so as
to facilitate subsequent feature migration. As for high-level
feature alignment, we explored feature correction blocks
to align marginal and output distributions across domains.
With uncomplicated loss function, each of the components
could be easily inserted into any layer of original network.
Experiment results demonstrated that DCAN achieved better
performance compared with other deep DA methods, espe-
cially when it came to very tough cross-domain tasks.

Figure 2.9: Domain Adaptation t-SNE feature representation [Li et al., 2020].

12 Learning supervised by synthetic data for Chest X-ray images

2.3. Domain Adaptation

In Figure 2.9 we can see an example of t-SNE representations extracted from different networks, (a)

using just ResNet, (b) using just DAN and (c) DCAN, we can observe that ResNet has lost the ability

to classify because of the gap between domains, while DCAN produces very compact clusters for each

class, with an almost perfect alignment.

Finally, in the paper, they show some results using the dataset, Office-31. As just mentioned, the

dataset has 3 domains Amazon (A), DSLR (D) and Webcam (W), that can be combined in 6 possible

domain adaptation tasks (A→ D, D→ A...). As we can see in Table 2.1, the results obtained by DCAN

are the best in most of the cases (except for two), on average it obtains the best results.
Table 1: Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Methods ResNet JDDA DAN RTN DANN ADDA MADA GTA MCD iCAN DAAA CDAN DSBN TADA SymNets MDD DCAN
A→W 68.4 82.6 80.5 84.5 82.0 86.2 90.0 89.5 88.6 92.5 86.8 94.1 92.7 94.3 90.8 94.5 95.0
D→W 96.7 95.2 97.1 96.8 96.9 96.2 97.4 97.9 98.5 98.8 99.3 98.6 99.0 98.7 98.8 98.4 97.5
W→D 99.3 99.7 99.6 99.4 99.1 98.4 99.6 99.8 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0
A→D 68.9 79.8 78.6 77.5 79.7 77.8 87.8 87.7 92.2 90.1 88.8 92.9 92.2 91.6 93.9 93.5 92.6
D→A 62.5 57.4 63.6 66.2 68.2 69.5 70.3 72.8 69.5 72.1 74.3 71.0 71.7 72.9 74.6 74.6 77.2
W→A 60.7 66.7 62.8 64.8 67.4 68.9 66.4 71.4 69.7 69.9 73.9 69.3 74.4 73.0 72.5 72.2 74.9

Avg 76.1 80.2 80.4 81.6 82.2 82.9 85.2 86.5 86.5 87.2 87.2 87.7 88.3 88.4 88.4 88.9 89.5

Table 2: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).
Methods Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
DWT 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6

CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
TADA 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6

SymNets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

DCAN 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5

the following overall objective of DCAN as:

min
G

L = Ls + α

L∑
l=1

(Ll
M + Ll

reg) + βLe, (7)

where Ls, Le are the source classification and target en-
tropy losses. LlM and Llreg represent the task-specific fea-
ture alignment and regularization losses for the l−th domain
conditioned feature correction module. α and β are two pos-
itive trade-off parameters.

Experiment
Experimental Setup
Office-31 (Saenko et al. 2010) is a popular object dataset
with 4110 images and 31 classes under office settings. It
consists of three distinct domains: Amazon (A), Webcam
(W) and DSLR (D). As (Zhang et al. 2019b), we construct 6
cross-domain tasks: A→W, ..., D→W.
Office-Home (Venkateswara et al. 2017) is a challenging
benchmark with totally 15588 images, containing 65 classes
from 4 domains: Artistic images (Ar), Clip Art (Cl), Product
images (Pr) and Real-World images (Rw). And we build 12
adaptation tasks: Ar→Cl, ..., Rw→Pr.
DomainNet is the largest visual domain adaptation dataset
so far, and involves about 0.6 million images with 345 cat-
egories that evenly spread in 6 domains: Clipart (clp), In-
fograph (inf), Painting (pnt), Quickdraw (qdr), Real (rel),
Sketch (skt). We use all released 4 domains with total
471,414 images: inf (53,201), qdr (172,500), rel (175,327)
and skt (70,386) to build 12 adaptation tasks. Following
(Peng et al. 2018), each domain is split into training and
test sets. Only training sets of both domains are involved in
the training procedure, and the results of target test set are
reported.

We implement our approach using PyTorch, and use
ResNet (He et al. 2016) as backbone networks. In the experi-
ments, we use a small batch of 32 samples per domain, there-
fore we freeze the BN layers and only update the weights of
other layers through back-propagation. Besides, we set the
learning rate of the classifier layer to be 10 times that of the
other layers, while the domain conditioned feature correc-
tion blocks are 1/10 times because of its precision. We fol-
low the standard evaluation protocols for unsupervised do-
main adaptation, in which source data are all labeled while
target data are unlabeled. All the images are cropped to 224
× 224 and each domain transfer task is evaluated by aver-
aging three random experiments. We adopt stochastic gradi-
ent descent (SGD) with momentum of 0.9 and the learning
rate strategy as described in (Ganin and Lempitsky 2015).
Moreover, we use the importance weighted cross-validation
method as (Zhang et al. 2019b) to select hyper-parameters.
The values of coefficient α, β are fixed to 1.5 and 0.1, p is
0.8 chosed from {0.2, 0.4, 0.6, 0.8, 1}.

Comparison Results
Compared Approaches: To better illustrate the effective-
ness of our method, we take several state-of-the-art deep
domain adaptation methods as baselines, including DAN
(Long et al. 2015), DANN (Ganin and Lempitsky 2015),
RTN (Long et al. 2016), ADDA (Tzeng et al. 2017), JAN
(Long et al. 2017), MADA (Pei et al. 2018), SE (French,
Mackiewicz, and Fisher 2017), MCD (Saito et al. 2018),
iCAN (Zhang et al. 2018), GTA (Sankaranarayanan et al.
2018), CDAN (Long et al. 2018), DAAA (Kang et al. 2018),
JDDA (Chen et al. 2019), DSBN (Chang et al. 2019), DWT
(Roy et al. 2019), TADA (Wang et al. 2019), SymNets
(Zhang et al. 2019a) and MDD (Zhang et al. 2019b). Note
that partial reported results are copied from their corre-

Table 2.1: DCAN Results in Office-31 Dataset [Li et al., 2020].

Eric Morales Agostinho 13

3
Datasets

As is common in this type of project, a considerable amount of time has been spent on research around

datasets. We have therefore decided to dedicate a chapter just to analysing the datasets we are going

to use in detail and how we are going to do it.

3.1 Chexpert

CheXpert [Irvin et al., 2019] is the dataset used in the paper [Schütte et al., 2021], and the dataset that

we have used to train the GANs. The dataset has 224,316 chest radiographs to which 14 binary labels

are associated according to the diseases detected.

These labels have been extracted from doctors’ reports (plain text), which have been passed through

a natural language processing algorithm specialised in detecting whether each of the diseases in the

labels had been diagnosed or not. Table 3.1 shows an example of how this labeller works. This is a

very good way to extract labels from plain text, but it has some loopholes since each doctor writes the

diagnoses differently. For example, some doctors may not mention that the patient is healthy and at

the same time not mention any disease, in this case when we extract the labels we will find an array

filled with only zeros (even a zero in No Finding), which we do not know what it means. As we will see

in the next section this is a real example that happens in this dataset, but there are many others, such

as a sub-label being tagged but not the parent label, and surely other problems that we have not yet

detected.

As is common in medical datasets, where some diseases may have more representation than oth-

ers, we find a very unbalanced distribution of classes, as can be seen in Table 3.2. The problem is even

more serious than what the Table shows, because as we will see in the analysis section, in our case

we will use different combinations of labels, and that is where huge imbalances occur.

It is important to note that, as we can see in Figure 3.1, the same sample can have more than one

label this is the most common. Figure 3.1 shows the organisation of the labels in this dataset, in which

we can observe superclasses (Lung Opacity) and subclasses within them (Lung Lesion).

15

Datasets

Pathology Positive (%) Uncertain (%) Negative (%)

No Finding 16627 (8.86) 0 (0.0) 171014 (91.14)
Enlarged Cardiom. 9020 (4.81) 10148 (5.41) 168473 (89.78)
Cardiomegaly 23002 (12.26) 6597 (3.52) 158042 (84.23)
Lung Lesion 6856 (3.65) 1071 (0.57) 179714 (95.78)
Lung Opacity 92669 (49.39) 4341 (2.31) 90631 (48.3)
Edema 48905 (26.06) 11571 (6.17) 127165 (67.77)
Consolidation 12730 (6.78) 23976 (12.78) 150935 (80.44)
Pneumonia 4576 (2.44) 15658 (8.34) 167407 (89.22)
Atelectasis 29333 (15.63) 29377 (15.66) 128931 (68.71)
Pneumothorax 17313 (9.23) 2663 (1.42) 167665 (89.35)
Pleural Effusion 75696 (40.34) 9419 (5.02) 102526 (54.64)
Pleural Other 2441 (1.3) 1771 (0.94) 183429 (97.76)
Fracture 7270 (3.87) 484 (0.26) 179887 (95.87)
Support Devices 105831 (56.4) 898 (0.48) 80912 (43.12)

Table 1: The CheXpert dataset consists of 14 labeled obser-
vations. We report the number of studies which contain these
observations in the training set.

incorporating those labels into the training process. We as-
sess the performance of these uncertainty approaches on a
validation set of 200 labeled studies, where ground truth is
set by a consensus of 3 radiologists who annotated the set
using the radiographs. We evaluate the approaches on 5 ob-
servations selected based on their clinical significance and
prevalence in the dataset, and find that different uncertainty
approaches are useful for different observations.

We compare the performance of our final model to 3 addi-
tional board certified radiologists on a test set of 500 studies
on which the consensus of 5 separate board-certified radi-
ologists serves as ground truth. We find that on 4 out of 5
pathologies, the model ROC and PR curves lie above at least
2 of 3 radiologist operating points. We make our dataset pub-
licly available to encourage further development of models.

Dataset
CheXpert is a large public dataset for chest radiograph inter-
pretation, consisting of 224,316 chest radiographs of 65,240
patients labeled for the presence of 14 observations as posi-
tive, negative, or uncertain. We report the prevalences of the
labels for the different obsevations in Table 1.

Data Collection and Label Selection

We retrospectively collected chest radiographic studies from
Stanford Hospital, performed between October 2002 and
July 2017 in both inpatient and outpatient centers, along
with their associated radiology reports. From these, we sam-
pled a set of 1000 reports for manual review by a board-
certified radiologist to determine feasibility for extraction of
observations. We decided on 14 observations based on the
prevalence in the reports and clinical relevance, conforming
to the Fleischner Society’s recommended glossary (Hansell
et al. 2008) whenever applicable. “Pneumonia”, despite be-
ing a clinical diagnosis, was included as a label in order to
represent the images that suggested primary infection as the
diagnosis. The “No Finding” observation was intended to
capture the absence of all pathologies.

1. unremarkable cardiomediastinal silhouette

2. diffuse reticular pattern, which can be
seen with an atypical infection or chronic
fibrotic change. no focal consolidation.

3. no pleural effusion or pneumothorax

4. mild degenerative changes in the lumbar
spine and old right rib fractures.

Observation Labeler
Output

No Finding
Enlarged Cardiom. 0

Cardiomegaly

Lung Opacity 1
Lung Lesion
Edema
Consolidation 0
Pneumonia u
Atelectasis
Pneumothorax 0
Pleural Effusion 0
Pleural Other

Fracture 1

Support Devices

Figure 2: Output of the labeler when run on a report sampled
from our dataset. In this case, the labeler correctly extracts
all of the mentions in the report (underline) and classifies the
uncertainties (bolded) and negations (italicized).

Label Extraction from Radiology Reports
We developed an automated rule-based labeler to extract ob-
servations from the free text radiology reports to be used
as structured labels for the images. Our labeler is set up in
three distinct stages: mention extraction, mention classifica-
tion, and mention aggregation.

Mention Extraction The labeler extracts mentions from
a list of observations from the Impression section of radiol-
ogy reports, which summarizes the key findings in the ra-
diographic study. A large list of phrases was manually cu-
rated by multiple board-certified radiologists to match vari-
ous ways observations are mentioned in the reports.

Mention Classification After extracting mentions of ob-
servations, we aim to classify them as negative (“no evi-
dence of pulmonary edema, pleural effusions or pneumoth-
orax”), uncertain (“diffuse reticular pattern may represent
mild interstitial pulmonary edema”), or positive (“moder-
ate bilateral effusions and bibasilar opacities”). The ‘uncer-
tain’ label can capture both the uncertainty of a radiologist
in the diagnosis as well as ambiguity inherent in the report
(“heart size is stable”). The mention classification stage is
a 3-phase pipeline consisting of pre-negation uncertainty,
negation, and post-negation uncertainty. Each phase consists
of rules which are matched against the mention; if a match is
found, then the mention is classified accordingly (as uncer-
tain in the first or third phase, and as negative in the second
phase). If a mention is not matched in any of the phases, it
is classified as positive.

Rules for mention classification are designed on the uni-
versal dependency parse of the report. To obtain the uni-
versal dependency parse, we follow a procedure similar to
Peng et al. (2018): first, the report is split and tokenized
into sentences using NLTK (Bird, Klein, and Loper 2009);
then, each sentence is parsed using the Bllip parser trained
using David McClosky’s biomedical model (Charniak and
Johnson 2005; McClosky 2010); finally, the universal de-
pendency graph of each sentence is computed using Stan-
ford CoreNLP (De Marneffe et al. 2014).

591

Table 3.1: Output of labeller example in CheXpert dataset [Irvin et al., 2019].

Pathology Positive (%) Uncertain (%) Negative (%)

No Finding 16627 (8.86) 0 (0.0) 171014 (91.14)
Enlarged Cardiom. 9020 (4.81) 10148 (5.41) 168473 (89.78)
Cardiomegaly 23002 (12.26) 6597 (3.52) 158042 (84.23)
Lung Lesion 6856 (3.65) 1071 (0.57) 179714 (95.78)
Lung Opacity 92669 (49.39) 4341 (2.31) 90631 (48.3)
Edema 48905 (26.06) 11571 (6.17) 127165 (67.77)
Consolidation 12730 (6.78) 23976 (12.78) 150935 (80.44)
Pneumonia 4576 (2.44) 15658 (8.34) 167407 (89.22)
Atelectasis 29333 (15.63) 29377 (15.66) 128931 (68.71)
Pneumothorax 17313 (9.23) 2663 (1.42) 167665 (89.35)
Pleural Effusion 75696 (40.34) 9419 (5.02) 102526 (54.64)
Pleural Other 2441 (1.3) 1771 (0.94) 183429 (97.76)
Fracture 7270 (3.87) 484 (0.26) 179887 (95.87)
Support Devices 105831 (56.4) 898 (0.48) 80912 (43.12)

Table 1: The CheXpert dataset consists of 14 labeled obser-
vations. We report the number of studies which contain these
observations in the training set.

incorporating those labels into the training process. We as-
sess the performance of these uncertainty approaches on a
validation set of 200 labeled studies, where ground truth is
set by a consensus of 3 radiologists who annotated the set
using the radiographs. We evaluate the approaches on 5 ob-
servations selected based on their clinical significance and
prevalence in the dataset, and find that different uncertainty
approaches are useful for different observations.

We compare the performance of our final model to 3 addi-
tional board certified radiologists on a test set of 500 studies
on which the consensus of 5 separate board-certified radi-
ologists serves as ground truth. We find that on 4 out of 5
pathologies, the model ROC and PR curves lie above at least
2 of 3 radiologist operating points. We make our dataset pub-
licly available to encourage further development of models.

Dataset
CheXpert is a large public dataset for chest radiograph inter-
pretation, consisting of 224,316 chest radiographs of 65,240
patients labeled for the presence of 14 observations as posi-
tive, negative, or uncertain. We report the prevalences of the
labels for the different obsevations in Table 1.

Data Collection and Label Selection

We retrospectively collected chest radiographic studies from
Stanford Hospital, performed between October 2002 and
July 2017 in both inpatient and outpatient centers, along
with their associated radiology reports. From these, we sam-
pled a set of 1000 reports for manual review by a board-
certified radiologist to determine feasibility for extraction of
observations. We decided on 14 observations based on the
prevalence in the reports and clinical relevance, conforming
to the Fleischner Society’s recommended glossary (Hansell
et al. 2008) whenever applicable. “Pneumonia”, despite be-
ing a clinical diagnosis, was included as a label in order to
represent the images that suggested primary infection as the
diagnosis. The “No Finding” observation was intended to
capture the absence of all pathologies.

1. unremarkable cardiomediastinal silhouette

2. diffuse reticular pattern, which can be
seen with an atypical infection or chronic
fibrotic change. no focal consolidation.

3. no pleural effusion or pneumothorax

4. mild degenerative changes in the lumbar
spine and old right rib fractures.

Observation Labeler
Output

No Finding
Enlarged Cardiom. 0

Cardiomegaly

Lung Opacity 1
Lung Lesion
Edema
Consolidation 0
Pneumonia u
Atelectasis
Pneumothorax 0
Pleural Effusion 0
Pleural Other

Fracture 1

Support Devices

Figure 2: Output of the labeler when run on a report sampled
from our dataset. In this case, the labeler correctly extracts
all of the mentions in the report (underline) and classifies the
uncertainties (bolded) and negations (italicized).

Label Extraction from Radiology Reports
We developed an automated rule-based labeler to extract ob-
servations from the free text radiology reports to be used
as structured labels for the images. Our labeler is set up in
three distinct stages: mention extraction, mention classifica-
tion, and mention aggregation.

Mention Extraction The labeler extracts mentions from
a list of observations from the Impression section of radiol-
ogy reports, which summarizes the key findings in the ra-
diographic study. A large list of phrases was manually cu-
rated by multiple board-certified radiologists to match vari-
ous ways observations are mentioned in the reports.

Mention Classification After extracting mentions of ob-
servations, we aim to classify them as negative (“no evi-
dence of pulmonary edema, pleural effusions or pneumoth-
orax”), uncertain (“diffuse reticular pattern may represent
mild interstitial pulmonary edema”), or positive (“moder-
ate bilateral effusions and bibasilar opacities”). The ‘uncer-
tain’ label can capture both the uncertainty of a radiologist
in the diagnosis as well as ambiguity inherent in the report
(“heart size is stable”). The mention classification stage is
a 3-phase pipeline consisting of pre-negation uncertainty,
negation, and post-negation uncertainty. Each phase consists
of rules which are matched against the mention; if a match is
found, then the mention is classified accordingly (as uncer-
tain in the first or third phase, and as negative in the second
phase). If a mention is not matched in any of the phases, it
is classified as positive.

Rules for mention classification are designed on the uni-
versal dependency parse of the report. To obtain the uni-
versal dependency parse, we follow a procedure similar to
Peng et al. (2018): first, the report is split and tokenized
into sentences using NLTK (Bird, Klein, and Loper 2009);
then, each sentence is parsed using the Bllip parser trained
using David McClosky’s biomedical model (Charniak and
Johnson 2005; McClosky 2010); finally, the universal de-
pendency graph of each sentence is computed using Stan-
ford CoreNLP (De Marneffe et al. 2014).

591

Table 3.2: Number of samples per label in CheXpert dataset [Irvin et al., 2019].

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

CheXpert: A Large Chest Radiograph Dataset
with Uncertainty Labels and Expert Comparison

Jeremy Irvin,1,* Pranav Rajpurkar,1,* Michael Ko,1 Yifan Yu,1
Silviana Ciurea-Ilcus,1 Chris Chute,1 Henrik Marklund,1 Behzad Haghgoo,1

Robyn Ball,2 Katie Shpanskaya,3 Jayne Seekins,3 David A. Mong,3
Safwan S. Halabi,3 Jesse K. Sandberg,3 Ricky Jones,3 David B. Larson,3

Curtis P. Langlotz,3 Bhavik N. Patel,3 Matthew P. Lungren,3,† Andrew Y. Ng1,†
1Department of Computer Science, Stanford University

2Department of Medicine, Stanford University
3Department of Radiology, Stanford University

*Equal contribution
†Equal contribution

{jirvin16, pranavsr}@cs.stanford.edu

Abstract

Large, labeled datasets have driven deep learning methods
to achieve expert-level performance on a variety of medical
imaging tasks. We present CheXpert, a large dataset that con-
tains 224,316 chest radiographs of 65,240 patients. We de-
sign a labeler to automatically detect the presence of 14 ob-
servations in radiology reports, capturing uncertainties inher-
ent in radiograph interpretation. We investigate different ap-
proaches to using the uncertainty labels for training convolu-
tional neural networks that output the probability of these ob-
servations given the available frontal and lateral radiographs.
On a validation set of 200 chest radiographic studies which
were manually annotated by 3 board-certified radiologists, we
find that different uncertainty approaches are useful for differ-
ent pathologies. We then evaluate our best model on a test set
composed of 500 chest radiographic studies annotated by a
consensus of 5 board-certified radiologists, and compare the
performance of our model to that of 3 additional radiologists
in the detection of 5 selected pathologies. On Cardiomegaly,
Edema, and Pleural Effusion, the model ROC and PR curves
lie above all 3 radiologist operating points. We release the
dataset to the public as a standard benchmark to evaluate per-
formance of chest radiograph interpretation models.1

Introduction
Chest radiography is the most common imaging examina-
tion globally, critical for screening, diagnosis, and manage-
ment of many life threatening diseases. Automated chest ra-
diograph interpretation at the level of practicing radiologists
could provide substantial benefit in many medical settings,
from improved workflow prioritization and clinical decision
support to large-scale screening and global population health
initiatives. For progress, there is a need for labeled datasets
that (1) are large, (2) have strong reference standards, and (3)
provide expert human performance metrics for comparison.

Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://stanfordmlgroup.github.io/competitions/chexpert

Lung Opacity

Pneumonia

Atelectasis

Enlarged Cardiom. Cardiomegaly

Consolidation

Support Devices

No Finding

Edema

Pneumothorax

Pleural Other

Pleural Effusion

Lesion

Model

0.03 0.01

0.05

0.49

0.05

0.10

0.06

0.04

0.03

0.00

0.27

0.11

0.11

Fracture0.05

Figure 1: The CheXpert task is to predict the probability of
different observations from multi-view chest radiographs.

In this work, we present CheXpert (Chest eXpert), a large
dataset for chest radiograph interpretation. The dataset con-
sists of 224,316 chest radiographs of 65,240 patients labeled
for the presence of 14 common chest radiographic observa-
tions. We design a labeler that can extract observations from
free-text radiology reports and capture uncertainties present
in the reports by using an uncertainty label.

The CheXpert task is to predict the probability of 14 dif-
ferent observations from multi-view chest radiographs (see
Figure 1). We pay particular attention to uncertainty labels
in the dataset, and investigate different approaches towards

590

Figure 3.1: CheXpert classes and subclasses [Irvin et al., 2019].

16 Learning supervised by synthetic data for Chest X-ray images

3.2. Chest8

3.2 Chest8

ChestX-ray8 [Wang et al., 2017] is very similar to the previous one it has some labels in common and

they have been extracted in the same way, by analysing medical analyses with a computer application.

This time we only have 108,948 samples and 9 labels.

As in the previous one, the labels have been extracted using Natural Language Processing al-

gorithm, so it can carry some errors. In this article, they also presented a figure to analyze the co-

occurrence of each keyword (Figure 3.2) in which they show which diseases are usually shown together

with which diseases because this dataset is also multi-label. In the Figure can be seen how most of the

diseases can appear alone, but for example, Pneumonia almost always appears with other diseases.

Also can be studied the most common combinations, for example, Mass with Atelectasis, Effusion and

Infiltration, and some others like Infiltration with Effusion and Atelectasis. By the way, it is important to

remark that by analyzing the images we have found that every disease can be found alone, and we will

use that in our project. That figure in general gives us an idea of the difficulty of the challenge that we

are facing.

Because it is so similar to CheXpert and has some tags in common (and therefore to the generated

synthesised data) it is a good candidate to be used to apply Domain Adaptation, which is why we have

chosen this dataset.

newly proposed chest X-ray database is at least one order

of magnitude larger than OpenI [1] (Refer to Table 1). To

achieve the better clinical relevance, we focus to exploit

the quantitative performance on weakly-supervised multi-

label image classification and disease localization of com-

mon thoracic diseases, in analogy to the intermediate step

of “detecting attributes” in [49] or “visual grounding” for

[32, 53, 22].

2 Construction of Hospital-scale Chest X-ray

Database
In this section, we describe the approach for build-

ing a hospital-scale chest X-ray image database, namely

“ChestX-ray8”, mined from our institute’s PACS system.

First, we short-list eight common thoracic pathology key-

words that are frequently observed and diagnosed, i.e., At-

electasis, Cardiomegaly, Effusion, Infiltration, Mass, Nod-

ule, Pneumonia and Pneumathorax (Fig. 1), based on radi-

ologists’ feedback. Given those 8 text keywords, we search

the PACS system to pull out all the related radiological re-

ports (together with images) as our target corpus. A vari-

ety of Natural Language Processing (NLP) techniques are

adopted for detecting the pathology keywords and removal

of negation and uncertainty. Each radiological report will

be either linked with one or more keywords or marked

with ’Normal’ as the background category. As a result, the

ChestX-ray8 database is composed of 108,948 frontal-view

X-ray images (from 32,717 patients) and each image is la-

beled with one or multiple pathology keywords or “Normal”

otherwise. Fig. 2 illustrates the correlation of the resulted

keywords. It reveals some connections between different

pathologies, which agree with radiologists’ domain knowl-

edge, e.g., Infiltration is often associated with Atelectasis

and Effusion. To some extend, this is similar with under-

standing the interactions and relationships among objects or

concepts in natural images [24].

2.1 Labeling Disease Names by Text Mining

Overall, our approach produces labels using the reports

in two passes. In the first iteration, we detected all the dis-

ease concept in the corpus. The main body of each chest

X-ray report is generally structured as “Comparison”, “In-

dication”, “Findings”, and “Impression” sections. Here, we

focus on detecting disease concepts in the Findings and Im-

pression sections. If a report contains neither of these two

sections, the full-length report will then be considered. In

the second pass, we code the reports as “Normal” if they

do not contain any diseases (not limited to 8 predefined

pathologies).

Pathology Detection: We mine the radiology reports

for disease concepts using two tools, DNorm [26] and

MetaMap [3]. DNorm is a machine learning method for

disease recognition and normalization. It maps every men-

tion of keywords in a report to a unique concept ID in the

Systematized Nomenclature of Medicine Clinical Terms

Figure 2. The circular diagram shows the proportions of images

with multi-labels in each of 8 pathology classes and the labels’

co-occurrence statistics.

(or SNOMED-CT), which is a standardized vocabulary of

clinical terminology for the electronic exchange of clinical

health information.

MetaMap is another prominent tool to detect bio-

concepts from the biomedical text corpus. Different from

DNorm, it is an ontology-based approach for the detec-

tion of Unified Medical Language System R© (UMLS R©)

Metathesaurus. In this work, we only consider the seman-

tic types of Diseases or Syndromes and Findings (namely

‘dsyn’ and ‘fndg’ respectively). To maximize the recall

of our automatic disease detection, we merge the results

of DNorm and MetaMap. Table 1 (in the supplemen-

tary material) shows the corresponding SNOMED-CT con-

cepts that are relevant to the eight target diseases (these

mappings are developed by searching the disease names in

the UMLS R©terminology service 2, and verified by a board-

certified radiologist.

Negation and Uncertainty: The disease detection algo-

rithm locates every keyword mentioned in the radiology re-

port no matter if it is truly present or negated. To eliminate

the noisy labeling, we need to rule out those negated patho-

logical statements and, more importantly, uncertain men-

tions of findings and diseases, e.g., “suggesting obstructive

lung disease”.

Although many text processing systems (such as [6]) can

handle the negation/uncertainty detection problem, most of

them exploit regular expressions on the text directly. One

of the disadvantages to use regular expressions for nega-

tion/uncertainty detection is that they cannot capture vari-

2https://uts.nlm.nih.gov/metathesaurus.html

2099

Figure 3.2: Labels’ co-occurrence in ChestX-ray8 dataset [Wang et al., 2017].

Eric Morales Agostinho 17

Datasets

3.3 Data Analysis

As we have explained in section 2.3, we are going to face the problem as a Domain Adaptation problem,

so the tasks must be the same. Unfortunately these datasets do not have exactly the same labels, so

we will have to make a selection in order to use them.

Table 3.3 shows the label matches between each of the datasets. There are some that have a 1:1

match, others are not so clear (e.g. Effusion vs Pleural Effusion) and others have no match at all (e.g.

Support Devices).

Chexpert ChestX-ray8

No Finding Normal

Enlarged Cardiom.

Cardiomegaly Cardiomegaly

Lung Opacity

Lung Lesion

Edema

Consolidation

Pneumonia Pneumonia

Atelectasis Atelectasis

Pneumothorax Pneumothorax

Pleural Effusion Effusion*

Pleural Other

Fracture

Support Devices

Infiltration

Mass

Nodule

Table 3.3: Labels comparison between datasets. In bold the labels chosen to be used in the project.

With all this we can make different selections of the data, to keep only the labels we are interested

in. In this work we have focused on three selections:

• Version 1: binary classification of the two majority classes, No Finding vs Pneumothorax.

• Version 2: binary classification in search of any disease, No Finding VS All.

• Version 3: A classification of four classes, one from each subgroup given by Chexpert (Table

3.3), No Finding VS Cardiomegaly VS Pneumonia VS Pneumothorax.

To make each of these selections we can use different techniques, depending on whether we want

to take into account the other unselected labels or not. This is an important decision since, as we have

seen in the two previous sections, both datasets suffer from the co-occurrence of labels. Taking this into

18 Learning supervised by synthetic data for Chest X-ray images

3.3. Data Analysis

account, two versions appear for each of the three versions just mentioned. One version is to force all

other (unselected) labels to be zero (version with 0s) and another version is to force only the selected

labels being zero, without worrying about the others (don’t care, version with Xs), more detail about the

different versions in the following subsections. As is evident, the first problem is much simpler than the

second one, as it focuses on finding only the selected diseases, in the second one you must be able to

find a certain disease in a patient who may also suffer from other diseases.

To be able to work with so many versions of each dataset we had two options. The first one is to

make a copy modifying the files for each one of the versions, which we discarded because of the disk

space that this would suppose. And on the other hand, the second option, which consists in using

always the same dataset but creating different CSVs that allow us to read only the images that we

are interested in, this is the one we have chosen. To be able to do this we have developed a cus-

tom torch.utils.data.Dataset 1 that using pandas library is reading the data of the requested

version.

To conclude this section, we have made an exhaustive analysis of each of the versions, in particular,

we have focused on CheXpert as it is the one with which the GAN is trained and it seems that it may

be of more importance.

Version 1: Binary - No Finding VS Pneumothorax

This is the simplest version, the one we have experimented with the most and the one that has worked

best in general, in particular the version with zeros. The question that could rise is: why Pneumothorax?

and the answer is simply that it is the more represented label when we use the version with zeros. In

the Figure 3.3 can be seen the labels values for each of the classes in this version.

About the version with zeros there is not much to comment, either it has only the Pneumothorax

label or it has the No Finding label. As expected the result is a very unbalanced dataset (there are

many more healthy patients than with Pneumothorax).

On the other hand, we have the version with Xs, which, although it may not seem like it, make it

a much more difficult problem. The Xs mean that we will have to be able to discern between healthy

patients (with or without support devices) and patients with Pneumothorax who may or may not have

any other disease. This is very complicated, because, first of all, many doctors only label the main

disease, leaving out others, for example they detect a pneumonia and a pacemaker, and in the report

they do not mention that there was also a pneumothorax, because it was hardly noticeable and it was

not the worst thing that happened to that patient. Moreover, as we will see later, it is quite difficult to

detect any of these images, a problem that is aggravated if we add a lot of noise in the form of other

diseases.

1Pytorch Datasets, Pytorch, accessed 2022-05-16. https://pytorch.org/docs/stable/data.html

Eric Morales Agostinho 19

https://pytorch.org/docs/stable/data.html

Datasets

In the Figures 3.5 and 3.4 we can see the label distribution of CheXpert that we have on each class

in the Version with Xs. In the case of the label No Finding we can see that it only can appear with

the label Support Devices (SD) or alone. However in the case of the label Pneumothorax, it allows

380 possible combinations, the most common ones are alone, combined with Support Devices or Lung

Opacity, but others only appear one time, for example, the combination of Cardiomegaly (C), Lung

Opacity (LO), Lung Lesion (LL), Edema (Ed), Consolidation (Co), Atelectasis (A) and Support Devices

(SD). Taking all this into account we can deduce the reason why when using the version with Xs we

face such a difficult problem, the system has to be able to diagnose Pneumothorax mixed with all the

other diseases, and the combinations are endless.

+ Version with 0s:

No Finding -> (10000000000000)

Pneumothorax -> (01000000000000)

+ Version with Xs:

No Finding -> (10XXXXXXXXXXXX)

Pneumothorax -> (01XXXXXXXXXXXX)

Figure 3.3: Different possibilities of Version 1. Each position in the binary array belongs to a label, a

zero means that this disease has not been detected, a one means that it has been detected and an

X means that it doesn’t care, you choose the sample whether this disease has been detected or not.

Figure 3.4: Label distribution in CheXpert version 1 with Xs and No Finding = 1.

Version 2: Binary - No Finding VS All

At first glance it may seem that this is the simplest version because the problem can be simplified to

anomaly detection, but nothing could be further from the truth. We have a problem very similar to

the one explained before, the version with Xs, but in this case we have one class alone and another

one with even more combination of diseases. As we can see in the Figure 3.6 we have 720 possible

combination of diseases, where the most common one is Lung Opacity alone, and the second one, that

without any doubt will be omitted because is basically No Finding without the No Finding label, errors

of the dataset. In the Figure 3.7 can be seen the labels values for each of the classes in this version.

20 Learning supervised by synthetic data for Chest X-ray images

3.3. Data Analysis

Figure 3.5: Label distribution in CheXpert version 1 with Xs and Pneumothorax = 1.

Figure 3.6: Label distribution in CheXpert version 2 with Xs and Finding = 1.

Eric Morales Agostinho 21

Datasets

+ Only possible version:

No Finding -> (10000000000000)

All -> (0XXXXXXXXXXXXX)

Figure 3.7: Only possibility of Version 2. Each position in the binary array belongs to a label, a zero

means that this disease has not been detected, a one means that it has been detected and an X

means that it doesn’t care, you choose the sample whether this disease has been detected or not.

Version 3: Four classes - No Finding VS Pneumothorax VS Pneumonia VS Cardiomegaly

Finally, this third version is very similar to version 1, only it is an even more complicated problem. Not

only does the algorithm have to deal with all the difficulties mentioned above, but it also has to be able

to distinguish the selected diseases, which is impossible to non-experts. In the Figure 3.12 can be seen

the labels values for each of the classes in this version.

About the version with Xs, as can be seen in the Figure 3.8, the No Finding label distribution is

similar to the version 1. On the other hand if we observe the Figures 3.9, 3.10 and 3.11, we can see that

they are all similar to the previous versions, where, except pneumothorax (whose most repeated label

distribution is being alone), the disease are most commonly found in combination with other diseases,

rarely appearing alone.

Figure 3.8: Label distribution in CheXpert version 3 with Xs and No Finding = 1.

Figure 3.9: Label distribution in CheXpert version 3 with Xs and Pneumothorax = 1.

22 Learning supervised by synthetic data for Chest X-ray images

3.3. Data Analysis

Figure 3.10: Label distribution in CheXpert version 3 with Xs and Pneumonia = 1.

Figure 3.11: Label distribution in CheXpert version 3 with Xs and Cardiomegaly = 1.

+ Version with 0s:

No Finding -> (10000000000000)

Pneumothorax -> (01000000000000)

Pneumonia -> (00100000000000)

Cardiomegaly -> (00010000000000)

+ Version with Xs:

No Finding -> (1000XXXXXXXXXX)

Pneumothorax -> (0100XXXXXXXXXX)

Pneumonia -> (0010XXXXXXXXXX)

Cardiomegaly -> (0001XXXXXXXXXX)

Figure 3.12: Different possibilities of Version 3. Each position in the binary array belongs to a label,

a zero means that this disease has not been detected, a one means that it has been detected and an

X means that it doesn’t care, you choose the sample whether this disease has been detected or not.

Eric Morales Agostinho 23

Datasets

3.3.1 Sample distribution by class

In Table 3.4 can be seen the sample distribution in CheXpert dataset. Can be seen a high imbalance

in all the versions except Version 1 with Xs, which is perfectly balanced. It is important to note that

the train test split was made manually, not using the dataset one, because when using it we found that

there are some classes that in some versions are not represented at all, so we cannot use it.

CheXpert No Finding Pneumothorax Pneumonia Cardiomegaly Finding

Version 1

0s
Training 7.642 (81%) 1.819 (19%) - - -

Validation 1.911 (81%) 455 (19%) - - -

Xs
Training 13.535 (49%) 14.198 (51%) - - -

Validation 3.439 (50%) 3.495 (50%) - - -

Version 2 -
Training 7.630 (11%) - - - 59.455 (89%)

Validation 1.923 (11%) - - - 14.849 (89%)

Version 3

0s
Training 7.641 (69%) 1.231 (11%) 341 (3%) 1.818 (17%) -

Validation 1.912 (69%) 308 (11%) 82 (3%) 456 (17%) -

Xs
Training 7.630 (11%) 51.988 (78%) 2.251 (3%) 5.216 (8%) -

Validation 1.923 (11%) 13.017 (78%) 534 (3%) 1.298 (8%) -

Table 3.4: Sample distribution in CheXpert.

On the other hand, in Table 3.5 can be seen that in this dataset the problem with the imbalance

is even worse and that we should keep that in mind throughout the project. Also can be seen that in

the ChestX-ray8 dataset we don’t have all the versions available, that is so because we found that the

results are not good as expected so we decided to continue with other versions instead.

ChestX-ray8 No Finding Pneumothorax Pneumonia Cardiomegaly

Version 1 with 0s
Training 50.500 (96%) 777 (2%) - -

Validation 9.861 (97 %) 316 (3%) - -

Version 3 with 0s
Training 50.500 (96%) 777 (1%) 234 (1%) 1.241 (2%)

Validation 9.861 (97%) 316 (0%) 88 (0%) 953 (0%)

Table 3.5: Sample distribution in ChestX-ray8.

24 Learning supervised by synthetic data for Chest X-ray images

4
Algorithm development

In this chapter we will go into detail on the algorithms we have used throughout this project, as well

as the design decisions we have been making to successfully complete this project. As previously

mentioned, the work is divided into two main tasks, on the one hand the generation of synthetic data

and on the other hand the study of the use of this synthetic data to learn how to classify real data,

domain adaptation, so this will be the organisation of this chapter.

4.1 Data Generation

To generate the synthetic data, as we have already mentioned, we are going to use Generative Ad-

versarial Networks. Specifically, we will rely on the code provided by the authors of the paper [Schütte

et al., 2021], in which they provide a complete framework for training and generating synthetic data

using GANs.

This took us quite some time, it is not easy to understand and use someone else’s code and even

less if it uses old versions incompatible with your CUDA installation.

4.1.1 Model Training

Firstly, the training of the model, the most computationally expensive part of the whole project. To train

the model we follow the scheme explained in chapter 2.1.1, in which we have two parts, a generator

and a discriminator. The generator, which is creating samples trying to follow the original distribution

of the training date. On the other hand, the discriminator is trying to detect if the sample received is

real (from the dataset CheXpert dataset) or fake (made by the generator).

The framework we have used is the one provided by paper [Schütte et al., 2021], whose code is

available on their Github repository [AugustDS, 2021]:

https://github.com/AugustDS/synthetic-medical-benchmark

25

https://github.com/AugustDS/synthetic-medical-benchmark

Algorithm development

In this code are provided different possible benchmarks to train models, with different resolutions,

labels, number of training images, etc. Also they analyze both chest X-ray images and brain computed

tomography images, and we will focus on the first type. For more details on the different benchmarks,

see Table 4.1.

We decided to keep only one of the models, the one that seemed to work best according to the

paper [Schütte et al., 2021], cpD-GAN. This will be the model we will use to generate our synthetic

images.

We used different versions of the models:

• A simplified version of the smaller model that had the benchmark (the 32x32 with 4 labels,

in red Table 4.1), where we reduced its resolution to 16x16. Result in Figure 4.1(a)

• The 32x32 with 4 labels model, images generated in Figure 4.1(b).

• The 64x64 model, this time using all the labels. Images generated in Figure 4.1(c).

The training time for these models is too long, the 32x32 takes 6 days and the 64x64 takes around 8

days of training, we don’t have enough time to train bigger models. Due to this constrain we asked the

authors of article [Schütte et al., 2021] for the weights of some of the trained models. They shared the

weights of the two largest models they had trained, the 256x256 and the 512x512 (marked with green

in Table 4.1, both using all the labels. As we can see in Figures 4.1(d) and 4.1(e), the results are almost

indistinguishable, and it is not easy for the non-expert human eye to tell whether we are looking at real

or synthetic images.

4.1.2 Data generation

Once the model has been trained, it is time to generate the synthetic data massively, the generation of

our synthetic dataset. We will use part of the cpd-GAN network, obviously, the generator (Figure 4.2,

which once trained can produce all the synthetic data we need, in addition, as we explained in section

2.1.1, it offers us the opportunity to generate synthetic data ”a la carte”, that is to say, with the labels

we want, just like a Condictional GAN (section 2.1.1) would do.

To carry out this task we will follow two approaches, the first one is to generate a dataset with a

perfect distribution of classes, generating the same samples of each of the classes and the second one

is to replicate the distribution of classes of our real dataset, in this case, CheXpert.

The easiest way is the first one, we only have to ask for a certain amount (in our case we chose

4000 for training and 1000 for validation) of samples of each of the classes and we would have our

synthetic dataset ready. The problem with this is that we will be generating data only compatible with

the versions of ”zeros” (not with "Xs") that we explained in section 3.3, this is why we have created the

second approach.

26 Learning supervised by synthetic data for Chest X-ray images

4.1. Data Generation

Table 4.1: Data generation benchmarks. [Schütte et al., 2021]

Eric Morales Agostinho 27

Algorithm development

(a) Resolution 16x16 (b) Resolution 32x32 (c) Resolution 64x64

(d) Resolution 256x256 (e) Resolution 512x512

Figure 4.1: Data generation examples.

Figure 4.2: Data generation framework.

28 Learning supervised by synthetic data for Chest X-ray images

4.1. Data Generation

The second version is more difficult without any doubt, it is not easy to generate a dataset with the

same combinations that CheXpert has, especially because some of them do not make much sense. The

process was, first pre-processing the dataset, then keeping the most representative tag combinations,

and finally using those generate a synthetic dataset as close to a real one as possible, which allow us

to work with both the versions with "zeros" and the versions with "Xs".

We have generated these synthetic datasets for each of the resolutions for which we have trained

models, 32x32, 64x64, 256x256 and 512x512. In the following experiments we will use the 256x256

images, since as we will see in the next chapter these are more representative and had statistically

higher representativeness, it seems that by focusing on improving the detail by raising the resolution

so much, the synthetic images provided less information. In Figure 4.3 you can see some examples

of the four classes that we have used in the experiments (generated with "zeros"), as we can see with

the naked eye of a non-expert it is very difficult to distinguish the classes of each of the images. And in

the Figure 4.3(e) we have an example of a image diagnosed as Cardiomegaly, but as it was generated

with "Xs" (following the first approach) so it also has Lung Opacity and Edema. In the Table 4.2 can be

seen that we have generated 4000 samples per class in training and 1000 samples in validation, in all

the versions of the dataset.

(a) Normal (b) Cardiomegaly (c) Pneumonia

(d) Pneumothorax (e) Cardiomegaly, Lung Opacity and

Edema

Figure 4.3: Data generation examples per class.

Eric Morales Agostinho 29

Algorithm development

Synthetic No Finding Pneumothorax Pneumonia Cardiomegaly Finding

Version 1

0s
Training 4000 (50%) 4000 (50%) - - -

Validation 1000 (50%) 1000 (50%) - - -

Xs
Training 4000 (50%) 4000 (50%) - - -

Validation 1000 (50%) 1000 (50%) - - -

Version 2 -
Training 4000 (50%) - - - 4000 (50%)

Validation 1000 (50%) - - - 1000 (50%)

Version 3

0s
Training 4000 (25%) 4000 (25%) 4000 (25%) 4000 (25%) -

Validation 1000 (25%) 1000 (25%) 1000 (25%) 1000 (25%) -

Xs
Training 4000 (25%) 4000 (25%) 4000 (25%) 4000 (25%) -

Validation 1000 (25%) 1000 (25%) 1000 (25%) 1000 (25%) -

Table 4.2: Sample distribution in synthetic dataset.

4.2 Domain Adaptation

This section aims to detail which algorithms we used to study the usefulness of the synthetic data we

used. Firstly we will present the direct approach without applying any alignment technique and secondly

the use Unsupervised Domain Adaptation techniques.

As explained in the State of the Art (section 2.3) domain adaptation is an special case of Transfer

Learning, where source and target data representations are different but both share the same task. In

this case, the objective is using real images as target data, synthetic images as source data, and both

sharing the task of classifying x-ray images.

4.2.1 Baseline - Without alignment

First of all we are going to use a classical neural network, without any add on. To perform that test

we have used a ResNet-50 [He et al., 2016] pre-trained with ImageNet [Deng et al., 2009]. Since the

learning was somewhat worse than expected, we decided to vitaminise our algorithm by using some

techniques such as using different learning rates in each layer or adding a scheduler.

In the Figure 4.4 can be seen a diagram of the framework. Where we only test the behaviour of the

algorithm only by training this model on the labelled source data (generated), and when the model is

trained we use it to classify target data (real).

30 Learning supervised by synthetic data for Chest X-ray images

4.2. Domain Adaptation

4.2.2 Unsupervised Domain Adaptation

To carry out Unsupervised Domain Adaptation (UDA) we will use the network described in the State

of the Art (section), DCAN [Li et al., 2020]. At a low level DCAN uses a Resnet-50 backbone with an

attention module that is trained using numerous training losses to achieve the desired feature alignment.

Due to the reduced number of classes, and the lack of reliability of the ground truth we decided

to remove from the training loss the regularization loss of the l−th feature Ll
reg which aims at solving

the over-correction problems caused by the added feature correction blocks with the guide of source

data [Li et al., 2020]. This what we called ”Our Alignment”.

In the Figure 4.5 can be seen a diagram of the framework where we train DCAN using source data

with labels (generated) and using target data without labels (real), and when the model is trained we

use it to classify the target data (real).

Figure 4.4: Baseline framework.

Eric Morales Agostinho 31

Algorithm development

Figure 4.5: Unsupervised Domain Adaptation framework.

32 Learning supervised by synthetic data for Chest X-ray images

5
Evaluation

In this chapter, we will analyze the evaluation results obtained in this project. It is divided into two

parts. Firstly we will analyze the methodology followed, analysing the framework, the metrics and the

environment used and secondly we will detail the results obtained in the different experiments.

5.1 Methodology

5.1.1 Framework

In this chapter, we will use the frameworks and algorithms detailed in the previous one. Once the

synthetic data has been generated following the diagram in Figure 4.2, we will evaluate the usefulness

of the synthetic data using a simple neural network (diagram in Figure 4.4) and Unsupervised Domain

Adaptation techniques (diagram in Figure 4.5).

Network configuration and parameters

We have decided to used the following network configurations and parameters, these parameters have

been chosen on the basis of other projects using similar architectures 1 2.

Baseline network

lr momentum weight_decay nesterov

First 2 epochs (only class layer) 0.01 0.9 1e-04 False

Next 10 epochs (all the network) 0.001 0.9 0 False

Table 5.1: Baseline parameters SGD optimizer.

1Synthetic Medical Benchmark, Github, accessed 2022-05-11.

https://github.com/AugustDS/synthetic-medical-benchmark

2Domain Conditioned Adaptation Network, Github, accessed 2022-06-04.

https://github.com/BIT-DA/DCAN

33

https://github.com/AugustDS/synthetic-medical-benchmark
https://github.com/BIT-DA/DCAN

Evaluation

As we have explained in the previous chapter (Section 4.2.1) we have used a simple ResNet-

50 as baseline classifier, but as we will see in the result section we have several versions of the

network. Here we are going to detail the parameters of the simple version and the improvement

one (with or without schedule). The configuration with using the scheduler used is the same but

adding the scheduler with the default parameters, also is important to not that the scheduler used

is: torch.optim.lr_scheduler.CosineAnnealingLR 3.

As can be seen in the Table 5.1 the parameters of the SGD optimizer of the simple network are

divided in two times. First the parameters used in the first two epochs of the training, where only the

classifier layer is being trained. Secondly the parameters used during the next ten epochs, where all

the network is being trained.

Then, in the Table 5.2 and 5.3 we have the parameters of the improvement version. The improve-

ment version is exactly the same network but modifying the optimizer parameters and adding the mul-

tipliers to the learning rate and to the decay on each layer separately. More specifically in the Table 5.2

we can see the value of the multipliers, divided in the base network (all the network) and the classifier

head (only the last layers). And in the Table 5.3 can be seen the parameters of the optimizer divided as

the simple network ones.

lr_mult decay_mult

base network 1 2

classifier layer 10 2

Table 5.2: ”Baseline improvement” parameters per layer.

lr momentum weight_decay nesterov

First 2 epochs (only class layer) 0.01 0.9 1e-04 False

Next 10 epochs (all the network) 1e-04 0.9 5e-04 True

Table 5.3: ”Baseline improvement” parameters SGD optimizer.

Lastly, we have the network configuration of the DCAN network used, both with the class alingment

and without it uses the same parameters. As before in the Table 5.5 we have the parameter multipliers

per layer and in the Table 5.4 we have the parameters of the optimizer, which are the same in all the

epochs.

lr momentum weight_decay nesterov

1e-04 0.9 5e-04 True

Table 5.4: UDA parameters SGD optimizer.

3CosineAnnealingLR, Pytorch, accessed 2022-06-19. torch.optim.lr scheduler.CosineAnnealingLR.html

34 Learning supervised by synthetic data for Chest X-ray images

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html

5.1. Methodology

lr_mult decay_mult

base network 1 2

classifier layer 10 2

class residual layer 0.01 2

feature residual layer 0.01 2

Table 5.5: UDA parameters per layer.

5.1.2 Metrics

In order to evaluate the performance of our models we will use the following metrics. Because the

datasets are highly unbalanced we have chosen metrics that are not susceptible to imbalances.

• Recall: This metric measure the percentage of positives samples in total that we are classi-

fying correctly.

Recall =
TP

TP + FN
(5.1)

• Balanced Accuracy: This metric allows us to calculate an estimate of how much data we

are classifying correctly, without being biased by class imbalance. It is defined as the average

of the Recall per class. Equation 5.2. This time we have used the version implemented by the

Sklearn library 4.

BalancedAccuracy =

∑#classes
i=0 Recall(classi)

#classes
(5.2)

5.1.3 Environment

The final hardware used is summarised in Table 5.6. But is important to remark that due to the enor-

mous computational cost of training the GANs, sometimes we used another machine with a larger GPU,

24GB RTX Titan, as the 11GB RTX 2080 ti could not fit the model in memory. I would like to take this

opportunity to thank the EPS and VPULab for the availability of these machines.

Componente Características

CPU Intel Core i9 10900k

GPU Nvidia RTX 2080 11 GB VRAM

RAM 32 GB

S.O. Ubuntu 20.04 LTS

Table 5.6: Table of technical details of the training and evaluation computer.

About the software we have used Python programming language with some of the most common

open source data science and deep learning libraries, the main ones are detailed in Table 5.7.

4Balanced Accuracy, Sklearn, accessed 2022-05-12. sklearn.metrics.balanced accuracy score.html

Eric Morales Agostinho 35

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html

Evaluation

Package Version

Pytorch 1.6.0

Tensorflow GPU 1.14.0

Numpy 1.19.1

Pandas 1.3.5

Sklearn 0.23.2

Table 5.7: Table of technical details of the training and evaluation computer.

5.2 Results of v1: No Finding VS Pneumothorax (binary)

In this section we will follow the same structure as in section 4.2, first we will detail the results obtained

without applying alignment and then we will show the results obtained using different types of align-

ments in Unsupervised Domain Adaptation. It is important to note that we will start by using only the

datasets version 1 with 0s, which is explained in detail in section 3.3, but after that, in the next section

we will show some results using other versions of the datasets.

5.2.1 Baseline - No Alignment

First, without alignment, as explained above, it is simply a matter of training a pre-trained ResNet50 in

Imagenet on the labelled synthetic data and then evaluating the performance of this algorithm on the

real CheXpert and ChestXray8 data.

We tested different versions of this network because as we can see in Figure 5.1(a) the training

curve without any improvement was very bad, we can observe a great overfitting in which we can

hardly appreciate an improvement in the validation data as the training progresses.

In the first improved version, we made some changes to the network, specifically we modified the

Learning Rate individually in each layer, lowering the Learning Rate of the backbone, which was trained

in Imagenet, and raising the Learning Rate of the classification head so that it would learn to classify

the X-rays better. We also added a scheduler to modify the Learning Rate of the network as it learned.

As we can see in Figure 5.1(d), the results improved considerably, although they were still not perfect,

now the network was at least learning little by little.

To analyse the contribution of each improvement we decided to carry out a small ablation study,

testing each contribution separately, as we can see in Figures 5.1(b) and 5.1(c), the most beneficial

modification was undoubtedly the Learning Rate per layer. And to finalize with the analysis of the

training process we have also keep the best validation result obtained in each version (Table 5.8), with

the epoch when it occurs and the training loss of that moment.

36 Learning supervised by synthetic data for Chest X-ray images

5.2. Results of v1: No Finding VS Pneumothorax (binary)

(a) Baseline. (b) LR per layer and weight decay.

(c) Scheduler (d) Scheduler, LR per layer and weight decay

Figure 5.1: Training curves baseline algorithm, numerical results in Table 5.8.

Eric Morales Agostinho 37

Evaluation

When evaluating the model over other datasets, as we can see in Table 5.8, when we train these

networks using the synthetic data (remember that they have been generated based on CheXpert),

without any improvement we seemed to obtain the best results for ChestX-ray8, even better than CheX-

pert, thanks to the training curve we can see that this is a local minimum at the beginning of the network

training, which by chance gives us some good results, but they are not representative at all. The results

that start to make sense are once we have added the learning rate per layer improvement, where we

can see that the algorithm behaves better in CheXpert than in ChestX-ray8, a behaviour that is main-

tained with the rest of the versions. Also, as we can see in the final version with both improvements,

the algorithm generalises very well, even loses some performance if we look at the test data of the

synthetic dataset, but it is not representative. Finally, the results are better in the scheduler-only version

than in the different learning rate version, even though the curves of the latter looked better, this makes

it clear that we should certainly look at various evaluation metrics, in this case, the curves did not have

information on how the network would generalise on other data, they only looked at the behaviour on

synthetic data.

Different LR

between layers
Scheduler

Trained with Synthetic evaluated with: Synthetic Dataset Loss:

Synthetic Chesxpert ChestX-ray8 Validation Training

- - 100.00 % 55.71 % 64.15 % 0.374 0.382

✓ - 100.00 % 57.36 % 54.28 % 0.371 0.322

- ✓ 100.00 % 61.24 % 57.35 % 0.359 0.378

✓ ✓ 99.15 % 63.31 % 56.42 % 0.353 0.253

Table 5.8: Results supervised. Trained with Synthetic data using version 1 with 0s. Including training

loss values.

However, if we look at the results obtained when training with the CheXpert data and the ChestX-

ray8 data (Table 5.9) we realise that these ”improvements” were not that much, and that the best

versions are only adding the scheduler in the case of CheXpert and adding nothing in the case of

ChestX-ray8.

Different LR

between layers
Scheduler

Trained with CheXpert evaluated with: Trained with ChestX-ray8 evaluated with:

Synthetic CheXpert ChestX-ray8 Synthetic CheXpert ChestX-ray8

- - 72.90 % 75.32 % 62.15 % 62.75 % 65.04 % 66.58 %

✓ - 67.85 % 71.41 % 55.74 % 62.20 % 60.05 % 64.03 %

- ✓ 72.95 % 74.84 % 63.83 % 61.90 % 61.69 % 65.52 %

✓ ✓ 65.55 % 69.04 % 56.44 % 60.34 % 58.93 % 63.32 %

Table 5.9: Results supervised. Trained with CheXpert and ChestX-ray8 datasets version 1 with 0s.

38 Learning supervised by synthetic data for Chest X-ray images

5.2. Results of v1: No Finding VS Pneumothorax (binary)

5.2.2 Using UDA

In this section we study the results obtained applying Unsupervised Domain Adaptation and we com-

pare them with the results of the algorithm presented in the previous section (without alignment). Also,

as introduced in the section 4.2.2 we have two versions of UDA algorithms, DCAN [Li et al., 2020]

(DCAN Alignment) and our modification of DCAN removing the class alignment (Our alignment).

We are more interested in evaluating how the algorithms behave on the real data, so for simplicity

we will only use the real data as target data, and we will also omit the results of using the same dataset

as target and source.

Taking all this into account, in Table 5.10 we can see the results obtained in each of the combinations

between source and target. As we can see the best option if we use synthetic images as source data

is Our UDA approach, while if we use real images as source data the best option is not to apply any

alignment. Also, as expected, when using CheXpert as target data, the best option is to use synthetic

images as source data, with quite a difference (≈ 8%). This is probably due to the fact that these

images have been generated with the GAN that was trained using CheXpert. On the contrary, when

using ChestX-ray8, the best option, although with very little difference (<2%) is to use the CheXpert

data, this makes sense as it is a larger dataset and probably contains more information. Finally, it

should be noted that we have not been able to run UDA using ChestX-ray8 as source and CheXpert as

target, the model always predicted the same class, thus achieving a 50% Balanced accuracy.

Lastly, looking again at Table 5.9 we can see the results obtained when training and evaluating with

the same dataset, with CheXpert and with ChestX-ray8. This helps us to know what would be a good

goal to achieve, to evaluate how good UDA is performing. As we can see, the best result we obtain

in the case of CheXpert is 75.32 %, while applying UDA we have managed to reach 73.98 % using

synthetic data and without using any real label, we have come quite close (-1.34%). In the case of

ChestX-ray8, training with the same dataset we reached 66.58 %, while applying UDA with synthetic

data we were left with 61.88 %, this time we were a little further away (-4.7%). We would get closer

by applying UDA using CheXpert, reaching 63.83% (-2.75%). This is a good way to check how the

experiments have turned out, and it seems that in this case it has been a success.

Eric Morales Agostinho 39

Evaluation

Target Source Proposal Balanced Acc

CheXpert

Synthetic

No Alignment 63.31 %

DCAN Alignment 73.03 %

Our Alignment 73.98 %

ChestX-ray8

No Alignment 65.04 %

DCAN Alignment 50.00 %

Our Alignment 50.00 %

ChestX-ray8

Synthetic

No Alignment 56.42 %

DCAN Alignment 61.13 %

Our Alignment 61.88 %

ChestXpert

No Alignment 63.83 %

DCAN Alignment 62.04 %

Our Alignment 61.84 %

Table 5.10: Summary of all results using version 1 with 0s.

5.3 Results other experiments

In addition to the experiments shown using dataset version 1 (binary with 0s), we have tested many

other versions of the data, the results of which are detailed in this section. It’s important to note that not

all the versions have the same experiments, that is so because we increase the number of experiments

depending on the results obtained in the previous ones, and if we detect that the results are not good

enough we continue with more promising versions. More detail about the different versions available in

the section 3.3.

5.3.1 Version 1: binary with Xs

In this case, we only have results with the CheXpert dataset. As we explained in the section on dataset

analysis, this is a much more complicated problem than the version with 0s, and this probably makes

the synthetic data not representative enought. As we can see in Table 5.11, the best result when

training with synthetic data is obtained without any type of alignment, reaching 54.96 %. This value is

far from the result obtained by training and evaluating on CheXpert, which reaches 80.38 %. Due to

these results, we abandoned this version and stopped doing experiments using it.

40 Learning supervised by synthetic data for Chest X-ray images

5.3. Results other experiments

Target Source Proposal Balanced Acc

CheXpert Synthetic

No Alignment 54.96 %

DCAN Alignment 52.04 %

Our Alignment 53.46 %

CheXpert CheXpert No Alignment 80.37 %

Table 5.11: Summary of results using version 1 (binary with Xs).

5.3.2 Version 2: No Finding vs All

Here something similar to the previous section happens, but the problem is even more difficult, so the

results are even worse. As we can see (Table 5.12) this time the best result using synthetic data is using

our alignment, reaching 52.94 %, far away from the 74.78 % obtained from training and evaluating on

CheXpert. Due to these results, we do not continue experimenting with other datasets here either.

Target Source Proposal Balanced Acc

CheXpert Synthetic

No Alignment 51.17 %

DCAN Alignment 52.61 %

Our Alignment 52.94 %

CheXpert CheXpert No Alignment 74.78 %

Table 5.12: Summary of results using version 2 (No Finding vs All).

5.3.3 Version 3: four classes

With 0s

This version has more tests than the previous ones because as it is a version with zeros we expected

it to do well. In Table 5.13 we have results with both CheXpert and ChestX-ray8.

As expected, the results are not bad, but they are not too good either. In the case of CheXpert, UDA

works very badly, with DCAN failing to learn anything and always predicting the same class (that’s why

it gets 25 % correct), but without using UDA we managed to improve that 25 % to 30.13 % (+5.13%).

Despite this improvement, we are still a bit far from the 41.5 % (-11.37%) obtained using CheXpert over

CheXpert. In the case of ChestX-ray8, the results are surprisingly better, using our UDA alignment we

achieved 30.34 %, which is a little closer to the ChestX-ray8 result of 36.74 % (-6.4%).

Eric Morales Agostinho 41

Evaluation

Target Source Proposal Balanced Acc

CheXpert Synthetic

No Alignment 30.13 %

DCAN Alignment 25.00 %

Our Alignment 28.07 %

CheXpert CheXpert No Alignment 41.50 %

ChestX-ray8 Synthetic

No Alignment 28.54 %

DCAN Alignment 27.73 %

Our Alignment 30.34 %

ChestX-ray8 ChestX-ray8 No Alignment 36.74 %

Table 5.13: Summary of results using version 3 with 0s (four classes).

With Xs

Finally, the version that we thought as the most difficult one, but in the end, we have discovered that it

is not so difficult. As we can see in Table 5.14 we obtain very similar results to those obtained in the

version 3 with 0s, staying even closer to the result obtained by training and evaluating with the same

dataset. In CheXpert, using DCAN we reached 29.28 %, which is a little closer than before to the

supervised result of 35.84 % (-6.57 %).

After obtaining these results we have meditated on why this version has a similar complexity to

the previous one and we believe it is because, as could be seen in Figure 3.12, when generating the

dataset we set the selected label to 1 and all other labels to X except the labels used by other classes

we are using, which we set to 0. This slightly eliminates the ambiguity of the dataset and probably that

is why this version is simpler than version 1 with Xs.

Target Source Proposal Balanced Acc

CheXpert Synthetic

No Alignment 27.27 %

DCAN Alignment 29.28 %

Our Alignment 27.33 %

CheXpert CheXpert No Alignment 35.84 %

Table 5.14: Summary of results using version 3 with Xs (four classes).

42 Learning supervised by synthetic data for Chest X-ray images

6
Conclusions and future work

6.1 Conclusions

As presented in the introduction, according to [Chen et al., 2021], a key challenge for applying AI in the

medical field is the representativeness of the data employed for training AI models and in this project

we have proved it. The results obtained in the binary with zeros dataset are good, so it seems like the

idea works, but as soon as the classification task start getting harder the problems begin.

This behaviour is probably because the synthesised data is very good visually but it is not able to

generate new information. It only compresses what we have and gives us different mixes. To the human

eye it is more than enough, but for a neural network to learn it is only useful for a simple problem, but

not enough for a more complex one. During this project, we have experimented using different versions

of the data, ranging from the simplest version to the most complex one and thus studying the degree of

representativeness of the data.

Regarding the use of Domain Adaptation algorithms, these seem to improve the results, but like

classical algorithms, they also require sufficiently representative data. Fortunately, the design of the

project allows the different parts to be modified as a block, so it opens the door to replace the data

generation model with a better performing one in the future, and to evaluate the Domain Adaptation

algorithms with these new data.

43

Conclusions and future work

6.2 Future work

As mentioned in the conclusions, the main advantage of this work is that it is divisible into two parts that

can be interchanged as a block, one is the generation of data and the other is to study its usefulness

for training machine learning models. So it opens the door to experimentation as better approaches

emerging in the state of the art.

Based on the above, the first task suggested by the project would be to test with other data gen-

eration techniques that generate data with stronger statistical power, can be tested approaches using

another type of generative model such as transformers [Ramesh et al., 2021], autoencoders [Wan et al.,

2017] or even extracting images using medical simulators [Sújar et al., 2019]. Once we have sufficiently

representative synthetic data, the next natural step would be to test more complex versions of the data,

the ones presented here or even others using a larger number of classes.

On the other hand, in the classification models, Unsupervised Domain Adaptation is interesting, but

perhaps this approach could also use Inductive Transfer Learning, i.e. pre-training using a lot of labelled

synthetic source data and finishing the training using a few labelled real target data. But of course, in

order to apply this, the few labelled real data is needed. Finally, in case we have a few labelled real

data, can be also experimented with classical self-supervised algorithms, which we tried to do in this

work, but it was too time consuming and we decided to prioritise other experiments.

44 Learning supervised by synthetic data for Chest X-ray images

Bibliography

[AugustDS, 2021] AugustDS (2021). Synthetic medical benchmark.

[Çalli et al., 2021] Çalli, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G., and Murphy, K.

(2021). Deep learning for chest x-ray analysis: A survey. Medical Image Anal., 72:102125.

[Chen et al., 2021] Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F., and Mahmood, F. (2021).

Synthetic data in machine learning for medicine and healthcare.

[Chesney and Citron, 2019] Chesney, B. and Citron, D. (2019). Deep fakes: A looming challenge for

privacy, democracy, and national security. Calif. L. Rev., 107:1753.

[Csurka, 2017] Csurka, G. (2017). A comprehensive survey on domain adaptation for visual appli-

cations. In Csurka, G., editor, Domain Adaptation in Computer Vision Applications, Advances in

Computer Vision and Pattern Recognition, pages 1–35. Springer.

[Deng et al., 2010] Deng, J., Berg, A. C., Li, K., and Fei-Fei, L. (2010). What does classifying more than

10, 000 image categories tell us? In Daniilidis, K., Maragos, P., and Paragios, N., editors, Computer

Vision - ECCV 2010 - 11th European Conference on Computer Vision, Heraklion, Crete, Greece,

September 5-11, 2010, Proceedings, Part V, volume 6315 of Lecture Notes in Computer Science,

pages 71–84. Springer.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In 2009 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 248–

255. IEEE Computer Society.

[Denton et al., 2015] Denton, E. L., Chintala, S., Szlam, A., and Fergus, R. (2015). Deep generative

image models using a laplacian pyramid of adversarial networks. In Cortes, C., Lawrence, N. D., Lee,

D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Processing Systems

28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,

Montreal, Quebec, Canada, pages 1486–1494.

[Food et al., 2019] Food, Administration, D., et al. (2019). Proposed regulatory framework for modifi-

cations to artificial intelligence/machine learning (ai/ml)-based software as a medical device (samd).

Department of Health and Human Services (United States).

[Frolov et al., 2021] Frolov, S., Hinz, T., Raue, F., Hees, J., and Dengel, A. (2021). Adversarial text-to-

image synthesis: A review. Neural Networks, 144:187–209.

[Gazda et al., 2021] Gazda, M., Plavka, J., Gazda, J., and Drotar, P. (2021). Self-supervised deep

convolutional neural network for chest x-ray classification. IEEE Access, 9:151972–151982.

[Goodfellow, 2017] Goodfellow, I. J. (2017). NIPS 2016 tutorial: Generative adversarial networks.

CoRR, abs/1701.00160.

Bibliography

[Goodfellow et al., 2014] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A. C., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling,

M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information

Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, De-

cember 8-13 2014, Montreal, Quebec, Canada, pages 2672–2680.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,

Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society.

[Heusel et al., 2017] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).

Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Guyon, I., von

Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors,

Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information

Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6626–6637.

[Irvin et al., 2019] Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H.,

Haghgoo, B., Ball, R. L., Shpanskaya, K. S., Seekins, J., Mong, D. A., Halabi, S. S., Sandberg, J. K.,

Jones, R., Larson, D. B., Langlotz, C. P., Patel, B. N., Lungren, M. P., and Ng, A. Y. (2019). Chexpert:

A large chest radiograph dataset with uncertainty labels and expert comparison. In The Thirty-Third

AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of

Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances

in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages

590–597. AAAI Press.

[Karras et al., 2018] Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of gans

for improved quality, stability, and variation. In 6th International Conference on Learning Represen-

tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

OpenReview.net.

[Karras et al., 2019] Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture

for generative adversarial networks. In IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 4401–4410. Computer Vision

Foundation / IEEE.

[Karras et al., 2020] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020).

Analyzing and improving the image quality of stylegan. In 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 8107–

8116. Computer Vision Foundation / IEEE.

[Koniusz et al., 2017] Koniusz, P., Tas, Y., and Porikli, F. (2017). Domain adaptation by mixture of

alignments of second-or higher-order scatter tensors. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 7139–7148. IEEE

Computer Society.

[Li et al., 2020] Li, S., Liu, C. H., Lin, Q., Xie, B., Ding, Z., Huang, G., and Tang, J. (2020). Domain

46 Learning supervised by synthetic data for Chest X-ray images

Bibliography

conditioned adaptation network. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI

2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The

Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,

USA, February 7-12, 2020, pages 11386–11393. AAAI Press.

[Odena et al., 2017] Odena, A., Olah, C., and Shlens, J. (2017). Conditional image synthesis with

auxiliary classifier gans. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International

Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70

of Proceedings of Machine Learning Research, pages 2642–2651. PMLR.

[Pan and Yang, 2010] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.

Data Eng., 22(10):1345–1359.

[Ramesh et al., 2021] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M.,

and Sutskever, I. (2021). Zero-shot text-to-image generation. In Meila, M. and Zhang, T., editors,

Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,

Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 8821–8831. PMLR.

[Ratliff et al., 2013] Ratliff, L. J., Burden, S., and Sastry, S. S. (2013). Characterization and computation

of local nash equilibria in continuous games. In 51st Annual Allerton Conference on Communication,

Control, and Computing, Allerton 2013, Allerton Park & Retreat Center, Monticello, IL, USA, October

2-4, 2013, pages 917–924. IEEE.

[Rivest, 1987] Rivest, R. L. (1987). Game tree searching by min/max approximation. Artif. Intell.,

34(1):77–96.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,

Z., Karpathy, A., Khosla, A., Bernstein, M. S., Berg, A. C., and Fei-Fei, L. (2015). Imagenet large

scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252.

[Schütte et al., 2021] Schütte, A. D., Hetzel, J., Gatidis, S., Hepp, T., Dietz, B., Bauer, S., and Schwab,

P. (2021). Overcoming barriers to data sharing with medical image generation: a comprehensive

evaluation. npj Digital Medicine, 4.

[Sújar et al., 2019] Sújar, A., Kelly, G., García, M., and Vidal, F. P. (2019). Projectional radiography

simulator: an interactive teaching tool. In Vidal, F. P., Tam, G. K. L., and Roberts, J. C., editors,

Computer Graphics & Visual Computing, CGVC 2019, Bangor, UK, September 12-13, 2019, pages

125–128. Eurographics Association.

[Wan et al., 2017] Wan, Z., Zhang, Y., and He, H. (2017). Variational autoencoder based synthetic data

generation for imbalanced learning. In 2017 IEEE Symposium Series on Computational Intelligence,

SSCI 2017, Honolulu, HI, USA, November 27 - Dec. 1, 2017, pages 1–7. IEEE.

[Wang et al., 2017] Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Summers, R. M. (2017). Chestx-

ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and

localization of common thorax diseases.

Eric Morales Agostinho 47

	Introduction
	Motivation
	Goals
	Project Structure

	State of the art
	Fundamentals
	Synthetic medical images
	Domain Adaptation

	Datasets
	Chexpert
	Chest8
	Data Analysis

	Algorithm development
	Data Generation
	Domain Adaptation

	Evaluation
	Methodology
	Results of v1: No Finding VS Pneumothorax (binary)
	Results other experiments

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

