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ABSTRACT

The use of Artificial Intelligence is changing our way of life. We can find it everywhere, from our
virtual assistant making an appointment for us in a restaurant to algorithms that can diagnose diseases
better and faster than a doctor. The two key problems with this type of technology are, firstly, the
excessive computing power it needs and, secondly, the massive amount of data required to make it
work properly. However, in the case of medical images, the focus of our research, there are even
further difficulties, as we must take into account privacy issues along with the fact that right now, health
organizations are not sharing information at all. The use of synthetic data can provide us with large
datasets without any privacy issues at a reduced cost. To achieve that, we have developed a synthetic
data generator based on Generative Adversarial Networks. Ideally, these artificially generated images
should not contain sensitive personal information while maintaining statistical features similar to the
original images. This way, a machine learning model will be able to learn from it. In our project, we
demonstrate that this approach works with certain caveats: It requires the data to be representative
enough - which in our simplified case it is. But, as the complexity increases, the algorithm struggles
to solve the task. This indicates that the data generated by the GAN does not have enough statistical

power to solve complex problems.
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INTRODUCTION

1.1 Motivation

According to [Chen et al., 2021], a key challenge for applying Al in the medical field is the represen-
tativeness of the data employed for training Al models. Hence, it becomes essential to look for and to
eliminate biases and errors in the trained models. These biases may be due to differences among the
data captured in different hospitals, demographics (gender, ethnicity...), or simply by the class imbal-
ance that is common in this type of data. In general, we need large datasets so representative data is
less affected by biases. However, such datasets present an increasing privacy concern and therefore,
rules and regulations are implemented to ensure only authorised individuals and organisations may

access to the data.

The above-mentioned issues can be overcomed by using synthetic data, and one of the most
widespread ways to generate such synthetic data are Generative Adversarial Networks (GANs), as
can be seen in [Schitte et al., 2021], the baseline of this research work. However, we could use
any other technique to generate this data, be it another type of generative model such as autoen-
coders [Wan et al., 2017] or even extracting images using medical simulators [Sujar et al., 2019]. Once
we have these synthesised data generated with their corresponding labels, we can apply the dataset

for supervised or self-supervised learning.

For supervised learning using synthetic medical data, it is typical to combine the available real and
synthetic labelled data for increasing the accuracy of the trained model as compared to employing only
real data [Calli et al., 2021].

Self-supervised learning has been recently proposed in the context of medical imaging to address
the limitations of data availability, annotation and privacy concerns. One type of approaches does self-
supervised learning by training a model using just unlabelled data (or very few labelled data and the
rest of the data being unlabelled) [Gazda et al., 2021]. This requires a pretext task (e.g. predict a given
rotation), a task which if a model is trained to solve will also learn visual features that can be adapted to
solve the real task. In a similar context of few labelled data, other alternative less explored is to perform
Unsupervised Domain Adaptation (UDA). UDA may be applied as a two stage approach by doing fully
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supervised training using only synthetic images and then performing domain adaptation with real data

without annotations [Csurka, 2017].

These unsupervised learning techniques differ from supervised learning in that supervised learning
uses real data that is all annotated, typically by a human. In contrast to unsupervised learning, which, as
already explained, its labels are generated automatically using pretext tasks (self-supervised learning)

or adapted from synthetic data (unsupervised domain adaptation).

1.2 Goals

The main objective of this thesis is to explore the use of synthetic data for self-supervised learning
based on convolutional neural networks in the context of chest X-ray imaging [Calli et al., 2021]. This

objective is divided into the following stages:

1.— Study the available datasets for chest X-ray images [Irvin et al., 2019,Wang et al., 2017].

2.— Analyse the existing approaches to generate synthetic chest X-ray images [Schitte et al.,
2021].

3.— Train and adapt a selected approach for generating synthetic chest X-ray images for

different classes (i.e. pathologies).

4 — Analyse the existing approaches for unsupervised domain adaptation (i.e. domain trans-

fer) from synthetic to real data for classification tasks [Csurka, 2017].

5.— Train and adapt a selected approach for unsupervised domain adaptation from synthetic

to real data for classification tasks.

6.— Generate a large dataset of synthetic data based on the model developed in stage (3)

with a dataset for chest X-ray images [Irvin et al., 2019, Wang et al., 2017].

7.— Study the utility of the generated synthetic data to do self-supervised learning by un-
supervised domain adaptation based on synthetic data. This utility will be measured by
carrying out experiments and ablation studies using the X-ray dataset not employed for the
synthetic data generated, and later comparing it with self-supervised approaches [Gazda
et al., 2021].

2 Learning supervised by synthetic data for Chest X-ray images
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1.3 Project Structure

Chapter 1. Introduction. In this chapter, we describe the problem around which the whole

project revolves, the motivation for the work and the structure of the project.

Chapter 2. State of the art. In this chapter, we collect the information that has served as a
theoretical basis for this work. We analyse the latest advances in Generative Models, the
generation of synthetic medical images and the use of Unsupervised Domain Adaptation in
classification problems.

Chapter 3. Datasets. In this chapter, we present the datasets used, as well as an exhaustive

analysis required to successfully carry out the project.

Chapter 4. Algorithm. In this chapter, we present the different algorithms used in each of
the two parts of our work, synthetic data generation and Unsupervised Domain Adaptation
(UDA).

Chapter 5. Evaluation. In this chapter, we detail the experiments carried out about the algo-

rithms used, as well as the results obtained in each of them.

Chapter 5. Conclusions and future work. In this chapter, we summarize the conclusions of
this work with a brief review of possible improvements that can be further investigated in the

future.

Eric Morales Agostinho 3
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This chapter will give a short introduction to the different key points behind this work, from an overview
of generative models to the use of synthetic medical images in machine learning and the unsupervised
domain adaptation. It is divided into three sections. First, one dedicated to the fundamental theory
needed to understand the project, basic concepts about Generative Models. Then one section explains
the actual work related to the generation of synthetic medical images. And finally a section dedicated

to explaining what is Unsupervised Domain Adaptation and why it is interesting in this project.

2.1 Fundamentals

2.1.1 Generative models

In order to create synthetic data we will use a type of model called “generative model”, specifically
Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]. All the content of this section is
based on the NIPS tutorial [Goodfellow, 2017].

The term refers to any model that uses a train set that follows a distribution pg.:, learns how to
estimate that distribution, resulting in a probability distribution p,,,.4.;- There are two types of generative
models, the ones that estimates p...qer €xplicitly (Figure 2.1) and the ones that are able to generate
samples from p.0der (Figure 2.2). GANs can be both but are focused primarily on the second one,

sample generation.

v

®oe0oe0 o o0 LN J oo o e 000 L] LN ] o0 o

Figure 2.1: Example of a generative model that estimates Gaussian density distribution [Goodfellow,
2017].

The GANs are designed to solve many of other generative models problems:
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Figure 2.2: Example of a generative model that generates samples from the model distribution
[Goodfellow, 2017]. Images extracted from ImageNet dataset [Deng et al., 2009, Deng et al., 2010,
Russakovsky et al., 2015].

e They are able to generate samples in parallel.

e The generator architecture has almost no restrictions.
e They do not need Markov chains.

e They do not need variational bound.

e The results generated by GANs are subjectively better.

On the other hand, the GANs have a new disadvantage, the training is more difficult because it
requires finding the Nash equilibrium [Ratliff et al., 2013], which is not as easy as optimizing a cost

function.

Generative Adversarial Networks

The idea of the GANs can be represented as a MiniMax game [Rivest, 1987]. The two players are,
on one hand, the generator, which is creating samples trying to follow the original distribution of the
training date. On the other hand, the discriminator is trying to detect if the sample received is real
(from the dataset) or fake (made by the generator). The generator is trained with the aim of fooling
the discriminator and the discriminator is trained as a traditional binary classifier (real or fake) using
supervised learning. More detail about the process is in Figure 2.3.

The two players can be represented as functions, G is the generator, that takes z as input and
depends on the parameters 0(%). D is the discriminator, that takes as input z or G(z) and depends on
the parameters 9(2).

The cost function depends on the parameters of both players, #(°) and 0(%). As the discriminator
is being trained as a traditional binary classifier we can use the standard cross-entropy function as cost
(Equation 2.1) but using two sources of data, one is the dataset, always with label 0, and the other is

the generator, always with label 1. The objective of the discriminator is to minimize the cost function.

TP "), 6L) = —%EmdmlogD(m - %Ezwg(l — D(G(x))). (2.1)

6 Learning supervised by synthetic data for Chest X-ray images
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D tries to make
D(G(z)) near 0,

D(x) tries to be G tries to make

near 1 D(G(z)) near 1
Differentiable D

function D
o 2 sampled from 2 sampled from
b data model
A
Differentiable
function G

Input noise z )

Figure 2.3: GAN framework process. D is the discriminator and G the generator, x are training

examples and z is random noise. The goal of the discriminator is to predict zero when the sample
has been generated by G (D(G(z)) =~ 0) and one if it is real (D(z) ~ 1). The goal of the generator is
to try to make the discriminator predict one when the sample has been generated by G (D(G(z)) ~ 1)
[Goodfellow, 2017].

As mentioned, a GAN is simply a MiniMax game between the discriminator and the generator, that
type of games are also called zero-sum game, where the sum of all player scores should be zero. With
this information, we can conclude that the cost function of the generator is simply the opposite of the
discriminator (Equation 2.2).

JG) — _ j(D) (2.2)
About the Nash equilibria [Ratliff et al., 2013], in this context and according to [Goodfellow, 2017], a

Nash equilibrium is the tuple (#(P), §()) where players are tied, which is a local minimum of J(G) with

respect to /(%) and a local minimum of J(D) with respect to 6(2).

Conditional GANs (cGAN)

Presented by [Denton et al., 2015], this model is based on a normal GAN structure but incorporates
class labelling of both the generator and the discriminator. More detail about the structure in the Figure
2.4,

Eric Morales Agostinho 7
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AC-GANs

Based on the cGAN architecture, [Odena et al., 2017] proposed a new one with the main difference
that the discriminator does not receive the class label, it is trained with an additional classification loss

to predict it. More detail in the Figure 2.4.

image

=

image

z > > > L
: — @]

Figure 2.4: cGAN and AC-GAN architectures. [Frolov et al., 2021]

Progressive GANs

One of the main challenges for GANs is the generation of high-resolution images, which is easier to
classify between real and generated images using higher resolutions, with a lot of detail [Odena et al.,
2017]. To address this problem, [Karras et al., 2018] proposes the concept of Progressive Generative
Adversarial Network, a training methodology for GANs based on the idea of progressively increasing
the number of layers during the training process. In this way, in the beginning, the network learns simple
structures of plain objects, where a smaller layer size is needed, and at the end learns the textures and

details, where a bigger layer size is needed. The structure can be seen in the Figure 2.5.

G Latent Latent Latent
) + v
Coa ] [ad ]
| - —
:  —————
 ————————
: :  ———————
: : i ]
i : C ]
§ ; [ 1024x1024 |
ng ﬂ; *e &g :
. Reals i iReals . iReaIs
i ] v
D P P [ 1024x1024 |
. . I| |I
; 1
. i [———]
. Py [E——]
i [E——]
v 1
yv
[ axa ] [ a4 ] 4x4

Training progresses ——

Figure 2.5: Progressive GAN training process. Starting having a low resolution of 4x4 that is being
increased during the training process [Karras et al., 2018].

On each step the resolution is increased (doubled) by adding new bigger layers smoothly, fading
the existing ones with it. This process is controlled by a parameter « that starts from 0 and linearly

increases to 1. More detail about these processes is in the Figure 2.6.

8 Learning supervised by synthetic data for Chest X-ray images
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G 16x16 16x16 16x16
[2x |
32x32
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Figure 2.6: ProgGAN resolution increase process [Karras et al., 2018].
cpD-GAN

Focusing on the field of the project, the use of medical images, we have discovered a new structure,
cpD-GAN. Proposed by [Schitte et al., 2021] it is a model developed just to improve the performance
on his benchmark. This model is based on the prog-GAN explained above but with some improve-
ments. The main difference, influenced by StyleGAN [Karras et al., 2019, Karras et al., 2020], is that
they dropped the progressive growth, that way it is possible to experiment with different architectures.
The best finding was the use of standard residual connections in the discriminator and output skip
connections in the discriminator. Also, is important to note that, as a CondictionalGAN, it allows us to

generate images "a la carte", selecting the classes as input.

Unfortunately, they don’t give much detail about this model in the article, only that it improves per-
formance over ProgGAN, so part of our work will be to evaluate it and try to understand it in more

detail.

2.2 Synthetic medical images

According to [Chen et al., 2021]. As the use of Al in the medical field expands, so do regulations and
clinical analyses. This type of analysis is essential to look for and eliminate biases and errors in the
models. These biases may have been caused by differences between teams from different hospitals,
or simply by the class imbalance that is common in this type of dataset. In general, we need large

datasets, with more representative data and avoiding ethical biases (gender, ethnicity...).

The use of synthetic medical data is increasing to alleviate the lack of real medical annotated data.
In other fields, for example, self-driving cars, simulators are being used to simulate accidents or things

that are difficult to capture in real life. However, as with everything else, there are good and bad uses

Eric Morales Agostinho 9
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we can make of this technology, for example, people are trying to make Deep Fakes spread fake news

and misinform the population [Chesney and Citron, 2019].

Additionally, if we talk in general about the use of Al in the medical field, we can see that it is growing
all the time. For example, the United States Food and Drug Administration (FDA) is close to approving
an Al-based software as a medical device (Al-SaMD), used for example to detect atrial fibrillation [Food
et al., 2019].

One of the most promising areas of Al for improvement in this field is generative modelling, in

particular GANs, as can be seen in [Schitte et al., 2021], the baseline of this research work.

2.2.1 Medical image generation

Real Dataset GAN Model Synthetic Dataset

NRE A Rn &
A T
' H pq [ll]l]l:l

Bk I]D[ll:l
m ‘nr‘ Cohort statistics
Figure 2.7: General structure where the GAN is used to remove private information [Schitte et al.,
2021].

—

The paper [Schitte et al., 2021] focuses on the idea of removing private information of the patients
using synthetic images, the author says that the synthetic images ideally have, in aggregate, similar
statistical properties to those of a source dataset but do not contain sensitive personal information
(Figure 2.7).

About the models, they use a ProgGAN (section 2.1.1 and [Karras et al., 2018]) and propose cPD-
GAN (section 2.1.1), an architecture based on ProgGAN.

Moreover, one of the best contributions of this paper is the benchmark they propose. They provide
all the implementation with which you can test the different models they propose and replicate all the

experiments. We will talk about that in detail in the section 4.1.

The training of the models can be done using this benchmark, and it is important to note that the
training is automatically stopped when the quality improvement has converged, that is measured using

the Fréchet Inception Distance (FID) score [Heusel et al., 2017].

10 Learning supervised by synthetic data for Chest X-ray images
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2.3 Domain Adaptation

In the context of machine learning, domain adaptation is seen as a special case of transfer learning.
Where, transfer learning is the broader research field focused on training a model on a source domain
or task in order to extrapolate to a different but related target domain or task, where either the tasks or

domains (or both) differ.

Following the notations of [Pan and Yang, 2010]: Let D be a domain, composed of a d-dimensional
feature space X € R? with a marginal probability distribution P(X). Then let T be a task defined by
the ground truth space Y and the conditional probability distribution P(Y|X), where X ~ XandY ~ Y
are random variables. In the context of computer vision, z € X is typically an RGB image and y € Y is
the ground truth of x. P(Y'|X) can be inferred from X, {x1,...,x,} of X ~ X, with their corresponding
labels Y, {y1, ..., yn} fromY ~ Y in a supervised manner.

Transfer Learning is the scenario where two different domains or tasks can be distinguished: D® =
{X$, P(X%)}, T = {Y*, P(Y*|X?)} the source domain, and D' = {X* P(X*)}, Tt = {Y*, P(Y!|X")}
the target domain. When D* # D' or T* # T?, the models trained on D* tend to have a drop in perfor-

mance when tested on D! or are not applicable if T* # T¢.

Based on these definitions, [Pan and Yang, 2010] categorizes different transfer learning scenarios
into: Inductive Transfer Learning, Transductive Transfer Learning and Unsupervised Transfer Learning.
Inductive Transfer Learning refers to having different source and target tasks. It requires some labeled
target samples for the model to extrapolate to the target domain. This is the most common scenario in
computer vision, where models pre-trained for image classification on Imagenet [Deng et al., 2009] are
used to extrapolate to different tasks such as object detection or semantic segmentation. Transductive
Transfer Learning is the scenario where source and target tasks are the same, while the source and the
target domains are different. Domain adaptation is an special case of Transductive Transfer Learning
where source and target data representations are different but both share the same task. Finally,
unsupervised Transfer Learning similar to Transductive Transfer Learning the target task is different but
related to the source task. However, unsupervised transfer learning focuses on solving unsupervised

tasks, such as clustering and dimensionality reduction.

On this project we will focus on domain adaptation methods, which according to this classification
belong to transductive transfer learning solutions, i.e. different target (real) and source (synthetic) data

but we will keep the same task (in this case classification), T* = T¢.

Eric Morales Agostinho 11
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2.3.1 Unsupervised Domain Adaptation

Domain Adaptation (DA) can be divided into supervised and unsupervised domain adaptation depend-

ing on the availability of target labels. Our focus in this work is Unsupervised Domain Adaptation (UDA).

To give a simple example of this UDA concept we can use the Office-31 dataset [Koniusz et al.,
2017]. A dataset that provides us with images of products in three different domains, one of them is
directly using images from Amazon, another one are photos taken with a professional DSLR camera
and the last ones are photos taken with a webcam (Figure 2.8. The objective is to train a model
using for example the Amazon images, which are easier to get already labelled and this model works
with images taken by a camera without labelling. This is an example where Unsupervised Domain

Adaptation is used.

Amazon DSLR Webcam

Figure 2.8: Office-31 dataset sample [Koniusz et al., 2017].

DCAN

Typically DA is performed by aligning features between images of both domains. By aligning the final
features, weights throughout the network are optimized to produce domain-agnostic features. However,
DCAN [Li et al., 2020] argues that alignment of low level features can reduce the network capabilities on
the target domain, thus, they propose to employ attention throughout the network to provide generality

while maintaining specificity

Figure 2.9: Domain Adaptation t-SNE feature representation [Li et al., 2020].

12 Learning supervised by synthetic data for Chest X-ray images
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In Figure 2.9 we can see an example of t-SNE representations extracted from different networks, (a)
using just ResNet, (b) using just DAN and (c) DCAN, we can observe that ResNet has lost the ability
to classify because of the gap between domains, while DCAN produces very compact clusters for each

class, with an almost perfect alignment.

Finally, in the paper, they show some results using the dataset, Office-31. As just mentioned, the
dataset has 3 domains Amazon (A), DSLR (D) and Webcam (W), that can be combined in 6 possible
domain adaptation tasks (A— D, D— A...). As we can see in Table 2.1, the results obtained by DCAN
are the best in most of the cases (except for two), on average it obtains the best results.

Methods ResNet JDDA DAN RTN DANN ADDA MADA GTA MCD iCAN DAAA CDAN DSBN TADA SymNets MDD|DCAN
A—W 684 826 805 845 820 86.2 90.0 895 88.6 925 868 941 927 943 908 945| 95.0
D—-W 967 952 97.1 96.8 969 962 974 979 985 988 993 986 99.0 987 988 984 | 975
W=D 993 99.7 99.6 994 99.1 984 99.6 99.8 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0| 100.0
A—D 689 798 78.6 775 797 77.8 87.8 87.7 922 90.1 888 929 922 91.6 939 935 92,6
D—A 625 574 636 662 682 695 703 728 695 72.1 743 710 717 729 746 746| 77.2
W—=A 607 667 628 648 674 689 664 714 69.7 699 739 693 744 73.0 725 722 749

Avg 76.1 802 804 81.6 822 829 852 865 865 872 872 877 883 884 884 889 | 89.5

Table 2.1: DCAN Results in Office-31 Dataset [Li et al., 2020].

Eric Morales Agostinho 13






DATASETS

As is common in this type of project, a considerable amount of time has been spent on research around
datasets. We have therefore decided to dedicate a chapter just to analysing the datasets we are going

to use in detail and how we are going to do it.

3.1 Chexpert

CheXpert [Irvin et al., 2019] is the dataset used in the paper [Schiitte et al., 2021], and the dataset that
we have used to train the GANs. The dataset has 224,316 chest radiographs to which 14 binary labels

are associated according to the diseases detected.

These labels have been extracted from doctors’ reports (plain text), which have been passed through
a natural language processing algorithm specialised in detecting whether each of the diseases in the
labels had been diagnosed or not. Table 3.1 shows an example of how this labeller works. This is a
very good way to extract labels from plain text, but it has some loopholes since each doctor writes the
diagnoses differently. For example, some doctors may not mention that the patient is healthy and at
the same time not mention any disease, in this case when we extract the labels we will find an array
filled with only zeros (even a zero in No Finding), which we do not know what it means. As we will see
in the next section this is a real example that happens in this dataset, but there are many others, such
as a sub-label being tagged but not the parent label, and surely other problems that we have not yet

detected.

As is common in medical datasets, where some diseases may have more representation than oth-
ers, we find a very unbalanced distribution of classes, as can be seen in Table 3.2. The problem is even
more serious than what the Table shows, because as we will see in the analysis section, in our case

we will use different combinations of labels, and that is where huge imbalances occur.

It is important to note that, as we can see in Figure 3.1, the same sample can have more than one
label this is the most common. Figure 3.1 shows the organisation of the labels in this dataset, in which

we can observe superclasses (Lung Opacity) and subclasses within them (Lung Lesion).

15



DATASETS

. Labeler

Observation Output
No Finding

1. unremarkable cardiomediastinal silhouette | Enlarged Cardiom. 0
Cardiomegaly

2. diffuse reticular pattern, which can be Lung Opacity !

3 | | . . Lung Lesion

seen with an atypical infection or chronic Edema

fibrotic change. no focal consolidation. Consolidation 0
Pneumonia u

3. no pleural effusion or pneumothorax Atelectasis
Pneumothorax o]
Pleural Effusion 0]

4. mild degenerative changes in the lumbar Pleural Other

spine and old right rib fractures. Fracture 1
Support Devices

Table 3.1: Output of labeller example in CheXpert dataset [Irvin et al., 2019].

Pathology Positive (%) Uncertain (%) Negative (%)
No Finding 16627 (8.86) 0(0.0) 171014 (91.14)
Enlarged Cardiom. 9020 (4.81) 10148 (5.41) 168473 (89.78)
Cardiomegaly 23002 (12.26) 6597 (3.52) 158042 (84.23)
Lung Lesion 6856 (3.65) 1071 (0.57) 179714 (95.78)
Lung Opacity 92669 (49.39) 4341 (2.31) 90631 (48.3)
Edema 48905 (26.06) 11571 (6.17) 127165 (67.77)
Consolidation 12730 (6.78) 23976 (12.78) 150935 (80.44)
Pneumonia 4576 (2.44) 15658 (8.34) 167407 (89.22)
Atelectasis 29333 (15.63) 29377 (15.66) 128931 (68.71)
Pneumothorax 17313 (9.23) 2663 (1.42) 167665 (89.35)
Pleural Effusion 75696 (40.34) 9419 (5.02) 102526 (54.64)
Pleural Other 2441 (1.3) 1771 (0.94) 183429 (97.76)
Fracture 7270 (3.87) 484 (0.26) 179887 (95.87)

Support Devices 105831 (56.4) 898 (0.48) 80912 (43.12)

Table 3.2: Number of samples per label in CheXpert dataset [Irvin et al., 2019].

0.03 0.01
on No Finding Enlarged Cardiom. H Cardiomegaly ]
0.1 | Support Devices Pleural Other 0.05
0.05 0.27 Pleural Effusion | 0.49
00 Jpsdy 005
0.00 Atelectasis

0.03 0.06

Consolidation
Lesion
N 0.10

0.04

Figure 3.1: CheXpert classes and subclasses [Irvin et al., 2019].
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3.2 Chest8

ChestX-ray8 [Wang et al., 2017] is very similar to the previous one it has some labels in common and
they have been extracted in the same way, by analysing medical analyses with a computer application.

This time we only have 108,948 samples and 9 labels.

As in the previous one, the labels have been extracted using Natural Language Processing al-
gorithm, so it can carry some errors. In this article, they also presented a figure to analyze the co-
occurrence of each keyword (Figure 3.2) in which they show which diseases are usually shown together
with which diseases because this dataset is also multi-label. In the Figure can be seen how most of the
diseases can appear alone, but for example, Pneumonia almost always appears with other diseases.
Also can be studied the most common combinations, for example, Mass with Atelectasis, Effusion and
Infiltration, and some others like Infiltration with Effusion and Atelectasis. By the way, it is important to
remark that by analyzing the images we have found that every disease can be found alone, and we will
use that in our project. That figure in general gives us an idea of the difficulty of the challenge that we

are facing.

Because it is so similar to CheXpert and has some tags in common (and therefore to the generated
synthesised data) it is a good candidate to be used to apply Domain Adaptation, which is why we have

chosen this dataset.

uoisnyi3
oor L 0%, 6000

0%

Figure 3.2: Labels’ co-occurrence in ChestX-ray8 dataset [Wang et al., 2017].
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3.3 Data Analysis

As we have explained in section 2.3, we are going to face the problem as a Domain Adaptation problem,
so the tasks must be the same. Unfortunately these datasets do not have exactly the same labels, so

we will have to make a selection in order to use them.

Table 3.3 shows the label matches between each of the datasets. There are some that have a 1:1
match, others are not so clear (e.g. Effusion vs Pleural Effusion) and others have no match at all (e.qg.
Support Devices).

Chexpert ChestX-ray8

No Finding Normal

Enlarged Cardiom.

Cardiomegaly Cardiomegaly

Lung Opacity
Lung Lesion
Edema
Consolidation

Pneumonia Pneumonia
Atelectasis Atelectasis
Pneumothorax Pneumothorax
Pleural Effusion Effusion*
Pleural Other
Fracture
Support Devices

Infiltration

Mass

Nodule

Table 3.3: Labels comparison between datasets. In bold the labels chosen to be used in the project.

With all this we can make different selections of the data, to keep only the labels we are interested

in. In this work we have focused on three selections:

e Version 1: binary classification of the two majority classes, No Finding vs Pneumothorax.
e Version 2: binary classification in search of any disease, No Finding VS All.

e Version 3: A classification of four classes, one from each subgroup given by Chexpert (Table
3.3), No Finding VS Cardiomegaly VS Pneumonia VS Pneumothorax.

To make each of these selections we can use different techniques, depending on whether we want
to take into account the other unselected labels or not. This is an important decision since, as we have

seen in the two previous sections, both datasets suffer from the co-occurrence of labels. Taking this into
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account, two versions appear for each of the three versions just mentioned. One version is to force all
other (unselected) labels to be zero (version with 0s) and another version is to force only the selected
labels being zero, without worrying about the others (don’t care, version with Xs), more detail about the
different versions in the following subsections. As is evident, the first problem is much simpler than the
second one, as it focuses on finding only the selected diseases, in the second one you must be able to

find a certain disease in a patient who may also suffer from other diseases.

To be able to work with so many versions of each dataset we had two options. The first one is to
make a copy modifying the files for each one of the versions, which we discarded because of the disk
space that this would suppose. And on the other hand, the second option, which consists in using
always the same dataset but creating different CSVs that allow us to read only the images that we
are interested in, this is the one we have chosen. To be able to do this we have developed a cus-
fom torch.utils.data.Dataset | that using pandas library is reading the data of the requested

version.

To conclude this section, we have made an exhaustive analysis of each of the versions, in particular,
we have focused on CheXpert as it is the one with which the GAN is trained and it seems that it may

be of more importance.

Version 1: Binary - No Finding VS Pneumothorax

This is the simplest version, the one we have experimented with the most and the one that has worked
best in general, in particular the version with zeros. The question that could rise is: why Pneumothorax?
and the answer is simply that it is the more represented label when we use the version with zeros. In

the Figure 3.3 can be seen the labels values for each of the classes in this version.

About the version with zeros there is not much to comment, either it has only the Pneumothorax
label or it has the No Finding label. As expected the result is a very unbalanced dataset (there are

many more healthy patients than with Pneumothorax).

On the other hand, we have the version with Xs, which, although it may not seem like it, make it
a much more difficult problem. The Xs mean that we will have to be able to discern between healthy
patients (with or without support devices) and patients with Pneumothorax who may or may not have
any other disease. This is very complicated, because, first of all, many doctors only label the main
disease, leaving out others, for example they detect a pneumonia and a pacemaker, and in the report
they do not mention that there was also a pneumothorax, because it was hardly noticeable and it was
not the worst thing that happened to that patient. Moreover, as we will see later, it is quite difficult to
detect any of these images, a problem that is aggravated if we add a lot of noise in the form of other

diseases.

1 Pytorch Datasets, Pytorch, accessed 2022-05-16. https://pytorch.org/docs/stable/data.html
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In the Figures 3.5 and 3.4 we can see the label distribution of CheXpert that we have on each class
in the Version with Xs. In the case of the label No Finding we can see that it only can appear with
the label Support Devices (SD) or alone. However in the case of the label Pneumothorax, it allows
380 possible combinations, the most common ones are alone, combined with Support Devices or Lung
Opacity, but others only appear one time, for example, the combination of Cardiomegaly (C), Lung
Opacity (LO), Lung Lesion (LL), Edema (Ed), Consolidation (Co), Atelectasis (A) and Support Devices
(SD). Taking all this into account we can deduce the reason why when using the version with Xs we
face such a difficult problem, the system has to be able to diagnose Pneumothorax mixed with all the

other diseases, and the combinations are endless.

+ Version with Os:

No Finding -> (10000000000000)

Pneumothorax —> (01000000000000)
+ Version with Xs:

No Finding -> (L10XXXXXXXKXKXXXX)

Pneumothorax -> (0 LIXXXXXXXXXXXX)

Figure 3.3: Different possibilities of Version 1. Each position in the binary array belongs to a label, a
zero means that this disease has not been detected, a one means that it has been detected and an
X means that it doesn’t care, you choose the sample whether this disease has been detected or not.

Pneumothorax No Finding EC Ca LO LL Ed Co Pn At PE PO Fr SD count
0 0 1 o 0 0 0 0O O O O O O O O 9553
1 0 1 o 0 0 0 0 O O O O 0O 0 1 7471

Figure 3.4: Label distribution in CheXpert version 1 with Xs and No Finding = 1.

Version 2: Binary - No Finding VS All

At first glance it may seem that this is the simplest version because the problem can be simplified to
anomaly detection, but nothing could be further from the truth. We have a problem very similar to
the one explained before, the version with Xs, but in this case we have one class alone and another
one with even more combination of diseases. As we can see in the Figure 3.6 we have 720 possible
combination of diseases, where the most common one is Lung Opacity alone, and the second one, that
without any doubt will be omitted because is basically No Finding without the No Finding label, errors

of the dataset. In the Figure 3.7 can be seen the labels values for each of the classes in this version.
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Pneumothorax Findiﬂg EC Ca LO LL Ed Co Pn At PE PO Fr SD count

0 1 o o o0 o0 0O O O O O O 0O 0 2274

1 1 o 0 0 o 0O O O O O O 0 O 1 2213

2 1 o o o 1 0 O O O O O 0 O 1 1938

3 1 o 0o o 1 0 0 0O 0O O 1 0 0 1 1645

4 1 o o o 1 0 O O O O O 0 O O 940

5 1 o o o 1 0 0 0O O O 1 0 0 0 671

6 1 0 0 0o O O O o0 O 0 1 0 0 1 647

7 1 o o0 o o O O O O 1 O 0 O 1 528
372 1 o o o 1 1 0 1 0 1 1 0 0 0 1
373 1 o o 1 0 O 0O o0 O O 1 01 0 1
374 1 o 0 1 1 0 0 O 0 0 1 0 1 0 1
375 1 o o0 1 1 0 1 0 1 0 1 0 0 0 1
376 1 o o0 o 1 0 1t 0O 0 1 0O 1 0 1 1
377 1 o 1 1 0 0 0O O O O 1 0 1 0 1
378 1 o o o o o0 11t O O 1 O 1 0 1 1
379 1 o 0 1 1T 1 1 1 0 1 0 0 0 1 1

Figure 3.5: Label distribution in CheXpert version 1 with Xs and Pneumothorax = 1.

Pneumothorax No Finding EC Ca LO LL Ed Co Pn At PE PO Fr SD count

0 0 o o o 1t O O O O O O 0 O 0 8446
1 0 o o o 0 O O O O O O 0 O 0 7T766
2 0 o o o 1t 0 0 O O 0 1 0 0 0 5972
3 0 o 0o o 0 O O O 0 0 1 0 0 0 3570
4 0 o o o o0 o0 1t O O O O 0 0O 0 3080
5 0 o0 o o 1t o t 0 0O 0 1 0 0 0 2329
6 1 o o o o0 o o0 o0 o 0 0 0 0 0 2274
7 0 o o o 1t o0 1t O O O O 0 O 0 2202
713 0 o1+ 0 0 1 0 0 11 0 O 0 0O O 1
714 0 o1+ 0o 1t 1 0 0 1 0 0 0 0 O 1
715 0 0 0 1 1t 1 1 0 1 0 0 0 0 O 1
716 0 o o o 1t 1 1t 0 1 0 0 0 1 0 1
717 0 o 1t o 1t 1 0 0 1 0 1 1 0 O 1
718 1 o o o 1t 1 0 0 1t 0 1 0 0 0 1
719 0 0 0 1 1t 1 1 0 1 0 1 0 0 0 1
720 0 0 0 1 1t 1 0 1 1 1 1 0 0 0 1

Figure 3.6: Label distribution in CheXpert version 2 with Xs and Finding = 1.
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No Finding
All

+ Only possible version:

->

->

(10000000000000)
(OXXXXXXXXKXXKXXX)

Figure 3.7: Only possibility of Version 2. Each position in the binary array belongs to a label, a zero

means that this disease has not been detected, a one means that it has been detected and an X

means that it doesn’t care, you choose the sample whether this disease has been detected or not.

Version 3: Four classes - No Finding VS Pneumothorax VS Pneumonia VS Cardiomegaly

Finally, this third version is very similar to version 1, only it is an even more complicated problem. Not
only does the algorithm have to deal with all the difficulties mentioned above, but it also has to be able

to distinguish the selected diseases, which is impossible to non-experts. In the Figure 3.12 can be seen

the labels values for each of the classes in this version.

About the version with Xs, as can be seen in the Figure 3.8, the No Finding label distribution is
similar to the version 1. On the other hand if we observe the Figures 3.9, 3.10 and 3.11, we can see that
they are all similar to the previous versions, where, except pneumothorax (whose most repeated label

distribution is being alone), the disease are most commonly found in combination with other diseases,

rarely appearing alone.

Fr

0 00 00 00 00 00 00 00 00

1 00 00 00 00 00 1.0 0.0 0.0

-

W N

242
243
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Fr
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
1.0

1.0 0.0 0.0

1.0 0.0 0.0

0.0
0.0

0.0
0.0

LL Ed PO Co SD PE At NoFinding EC LO Cardiomegaly Pneumonia Pneumothorax

0.0
0.0

Figure 3.8: Label distribution in CheXpert version 3 with Xs and No Finding = 1.
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Figure 3.9: Label distribution in CheXpert version 3 with Xs and Pneumothorax = 1.
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Figure 3.12: Different possibilities of Version 3. Each position in the binary array belongs to a label,
a zero means that this disease has not been detected, a one means that it has been detected and an
X means that it doesn’t care, you choose the sample whether this disease has been detected or not.
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Figure 3.10: Label distribution in CheXpert version 3 with Xs and Pneumonia = 1.
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Label distribution in CheXpert version 3 with Xs and Cardiomegaly = 1.
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3.3.1 Sample distribution by class

In Table 3.4 can be seen the sample distribution in CheXpert dataset. Can be seen a high imbalance
in all the versions except Version 1 with Xs, which is perfectly balanced. It is important to note that
the train test split was made manually, not using the dataset one, because when using it we found that

there are some classes that in some versions are not represented at all, so we cannot use it.

CheXpert No Finding Pneumothorax Pneumonia Cardiomegaly Finding
0 Training 7.642 (81%) 1.819 (19%) - - -
s
) Validation 1.911 (81%) 455 (19%) - - -
Version 1
X Training 13.535 (49%) 14.198 (51%) - - -
]
Validation 3.439 (50%) 3.495 (50%) - - -
) Training 7.630 (11%) - - - 59.455 (89%)
Version2 - o
Validation 1.923 (11%) - - - 14.849 (89%)
0 Training 7.641 (69%) 1.231 (11%) 341 (3%) 1.818 (17%) -
S
) Validation 1.912 (69%) 308 (11%) 82 (3%) 456 (17%) -
Version 3
X Training 7.630 (11%) 51.988 (78%) 2.251 (3%) 5.216 (8%) -
]
Validation 1.923 (11%) 13.017 (78%) 534 (3%) 1.298 (8%) -

Table 3.4: Sample distribution in CheXpert.

On the other hand, in Table 3.5 can be seen that in this dataset the problem with the imbalance
is even worse and that we should keep that in mind throughout the project. Also can be seen that in
the ChestX-ray8 dataset we don’t have all the versions available, that is so because we found that the

results are not good as expected so we decided to continue with other versions instead.

ChestX-ray8 No Finding Pneumothorax Pneumonia Cardiomegaly
. ) Training 50.500 (96%) 777 (2%) - -
Version 1 with Os L
Validation  9.861 (97 %) 316 (3%) - -
. ) Training 50.500 (96%) 777 (1%) 234 (1%) 1.241 (2%)
Version 3 with Os o
Validation 9.861 (97%) 316 (0%) 88 (0%) 953 (0%)

Table 3.5: Sample distribution in ChestX-ray8.
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In this chapter we will go into detail on the algorithms we have used throughout this project, as well
as the design decisions we have been making to successfully complete this project. As previously
mentioned, the work is divided into two main tasks, on the one hand the generation of synthetic data
and on the other hand the study of the use of this synthetic data to learn how to classify real data,

domain adaptation, so this will be the organisation of this chapter.

4.1 Data Generation

To generate the synthetic data, as we have already mentioned, we are going to use Generative Ad-
versarial Networks. Specifically, we will rely on the code provided by the authors of the paper [Schiitte
et al., 2021], in which they provide a complete framework for training and generating synthetic data
using GANSs.

This took us quite some time, it is not easy to understand and use someone else’s code and even

less if it uses old versions incompatible with your CUDA installation.

4.1.1 Model Training

Firstly, the training of the model, the most computationally expensive part of the whole project. To train
the model we follow the scheme explained in chapter 2.1.1, in which we have two parts, a generator
and a discriminator. The generator, which is creating samples trying to follow the original distribution
of the training date. On the other hand, the discriminator is trying to detect if the sample received is

real (from the dataset CheXpert dataset) or fake (made by the generator).

The framework we have used is the one provided by paper [Schiitte et al., 2021], whose code is

available on their Github repository [AugustDS, 2021]:

https://github.com/AugustDS/synthetic-medical-benchmark
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In this code are provided different possible benchmarks to train models, with different resolutions,
labels, number of training images, etc. Also they analyze both chest X-ray images and brain computed
tomography images, and we will focus on the first type. For more details on the different benchmarks,
see Table 4.1.

We decided to keep only one of the models, the one that seemed to work best according to the
paper [Schitte et al., 2021], cpD-GAN. This will be the model we will use to generate our synthetic

images.

We used different versions of the models:

o A simplified version of the smaller model that had the benchmark (the 32x32 with 4 labels,

in red Table 4.1), where we reduced its resolution to 16x16. Result in Figure 4.1(a)
e The 32x32 with 4 labels model, images generated in Figure 4.1(b).

e The 64x64 model, this time using all the labels. Images generated in Figure 4.1(c).

The training time for these models is too long, the 32x32 takes 6 days and the 64x64 takes around 8
days of training, we don’t have enough time to train bigger models. Due to this constrain we asked the
authors of article [Schitte et al., 2021] for the weights of some of the trained models. They shared the
weights of the two largest models they had trained, the 256x256 and the 512x512 (marked with green
in Table 4.1, both using all the labels. As we can see in Figures 4.1(d) and 4.1(e), the results are almost
indistinguishable, and it is not easy for the non-expert human eye to tell whether we are looking at real

or synthetic images.

4.1.2 Data generation

Once the model has been trained, it is time to generate the synthetic data massively, the generation of
our synthetic dataset. We will use part of the cpd-GAN network, obviously, the generator (Figure 4.2,
which once trained can produce all the synthetic data we need, in addition, as we explained in section
2.1.1, it offers us the opportunity to generate synthetic data "a la carte”, that is to say, with the labels

we want, just like a Condictional GAN (section 2.1.1) would do.

To carry out this task we will follow two approaches, the first one is to generate a dataset with a
perfect distribution of classes, generating the same samples of each of the classes and the second one

is to replicate the distribution of classes of our real dataset, in this case, CheXpert.

The easiest way is the first one, we only have to ask for a certain amount (in our case we chose
4000 for training and 1000 for validation) of samples of each of the classes and we would have our
synthetic dataset ready. The problem with this is that we will be generating data only compatible with
the versions of "zeros” (not with "Xs") that we explained in section 3.3, this is why we have created the

second approach.
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Table 1. All benchmark settings.
Type Benchmark Resolution 0/1 labels Classes Train set Test/val set Per class
Chest Classes 32x32 9 20 29,000 3800 1450
32x32 8 15 24,000 2850 1600
32x32 5 10 20,000 1900 2000
32x32 5 6 13,800 1140 2300
32x32 5 4 15,600 760 3900
[32x32 4 2 12,600 380 6300 |
Samples 32x32 4 3 17,850 2250 5950
32x32 4 3 13,500 2250 4500
32x32 4 3 9000 2250 3000
32x32 4 3 4500 2250 1500
32x32 4 3 3000 2250 1000
32x32 4 3 1500 2250 500
32x32 4 3 1200 2250 400
32x32 4 3 600 2250 200
Resolution 32x32 14 138 117,168 4000 256—7586
|64 x64 14 138 117,168 4000 256—7586 |
128 x 128 14 138 117,168 4000 256—7586
256 x 256 14 138 117,168 4000 256—-7586
512x512 14 138 117,168 4000 256—7586
Brain Classes 32x32 5 10 25,000 3000 2500
32x32 5 8 24,960 2400 3120
32x32 5 6 25,020 1800 4170
32x32 4 4 25,000 1200 6250
32x32 2 2 25,000 600 12,500
Samples 32x32 5 6 32,400 3000 5400
32x32 5 6 27,000 3000 4500
32x32 5 6 18,000 3000 3000
32x32 5 6 9000 3000 1500
32x32 5 6 6000 3000 1000
32x32 5 6 3000 3000 500
32x32 5 6 1800 3000 300
32x32 5 6 600 3000 100
Resolution 32x32 6 20 117,168 4000 155-85,876
64 x 64 6 20 117,168 4000 155—-85,876
128 x 128 6 20 117,168 4000 155—-85,876
256 x 256 6 20 117,168 4000 155—85,876
512x512 6 20 117,168 4000 155—-85,876
Each row defines the composition of a specific benchmark setting. After GAN training, the synthetic datasets are generated by conditioning on the real label
sets, resulting in equivalent data folds. Our chest radigraph data pool consists of 117,168 (44,153) training, 15,418 (5519) validation and 14,687 (5520) test
samples (patients), respectively. Our brain computed tomography scan data pool consists of 173,271 (15,133) training, 22,095 (1892) validation and 20,500
(1892) test samples (patients), respectively. The 14 binary chest X-ray labels are enlarged cardiomediastinum, cardiomegaly, lung opacity, lung lesion, oedema,
consolidation, pneumonia, atelectasis, pneumothorax, pleural effusion, pleural other, fracture and support device, and no finding. The six binary brain CT scan
labels are epidural, subarachnoid, subdural, intraparenchymal and intraventricular haemorrhage, and no finding. 0/1 Labels: number of binary labels. Classes:
number of classes. Note: the number of classes refers to the number of unique binary label combinations. If different binary labels co-occur, we can have fewer
classes than 0/1 labels. Train set: number of samples in training set. Test/val set: number of samples in each the test and validation set. Per class: number of
training samples per class.

Table 4.1: Data generation benchmarks. [Schitte et al., 2021]
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(a) Resolution 16x16 (b) Resolution 32x32 (c) Resolution 64x64

(d) Resolution 256x256 (e) Resolution 512x512

Figure 4.1: Data generation examples.

Real Data

Chexpert
With Labels
SISl %

DISCRIMINATOR
cpD-GAN

Synthetic Data

G ted Dataset
GENERATOR FAKE 77700
cpD-GAN ’ f§|

Figure 4.2: Data generation framework.
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The second version is more difficult without any doubt, it is not easy to generate a dataset with the
same combinations that CheXpert has, especially because some of them do not make much sense. The
process was, first pre-processing the dataset, then keeping the most representative tag combinations,
and finally using those generate a synthetic dataset as close to a real one as possible, which allow us

to work with both the versions with "zeros" and the versions with "Xs".

We have generated these synthetic datasets for each of the resolutions for which we have trained
models, 32x32, 64x64, 256x256 and 512x512. In the following experiments we will use the 256x256
images, since as we will see in the next chapter these are more representative and had statistically
higher representativeness, it seems that by focusing on improving the detail by raising the resolution
so much, the synthetic images provided less information. In Figure 4.3 you can see some examples
of the four classes that we have used in the experiments (generated with "zeros"), as we can see with
the naked eye of a non-expert it is very difficult to distinguish the classes of each of the images. And in
the Figure 4.3(e) we have an example of a image diagnosed as Cardiomegaly, but as it was generated
with "Xs" (following the first approach) so it also has Lung Opacity and Edema. In the Table 4.2 can be
seen that we have generated 4000 samples per class in training and 1000 samples in validation, in all

the versions of the dataset.

(a) Normal (b) Cardiomegaly (c) Pneumonia

(d) Pneumothorax (e) Cardiomegaly, Lung Opacity and
Edema

Figure 4.3: Data generation examples per class.
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Synthetic No Finding Pneumothorax Pneumonia Cardiomegaly Finding
0 Training 4000 (50%) 4000 (50%)
S
) Validation 1000 (50% 1000 (50%
Version 1

Training 4000 (50%
Validation 1000 (50%
Training 4000 (50%

(50%)
4000 (50%)
Xs ( )

1000 (50%

(50%)

(50%)

(50%)

(50%) 4000 (50%)
Validation 1000 (50%) - - - 1000 (50%)

(25%)

(25%)

(25%)

(25%)

Version 2
0 Training 4000 (25% 4000 (25%) 4000 (25%) 4000 (25%)
s
Version 3 Validation 1000 (25% 1000 (25%) 1000 (25%) 1000 (25%)
‘ersion
X Training 4000 (25%. 4000 (25%) 4000 (25%) 4000 (25%)
s
Validation 1000 (25% 1000 (25%) 1000 (25%) 1000 (25%)

Table 4.2: Sample distribution in synthetic dataset.

4.2 Domain Adaptation

This section aims to detail which algorithms we used to study the usefulness of the synthetic data we
used. Firstly we will present the direct approach without applying any alignment technique and secondly

the use Unsupervised Domain Adaptation techniques.

As explained in the State of the Art (section 2.3) domain adaptation is an special case of Transfer
Learning, where source and target data representations are different but both share the same task. In
this case, the objective is using real images as target data, synthetic images as source data, and both
sharing the task of classifying x-ray images.

4.2.1 Baseline - Without alignment

First of all we are going to use a classical neural network, without any add on. To perform that test
we have used a ResNet-50 [He et al., 2016] pre-trained with ImageNet [Deng et al., 2009]. Since the
learning was somewhat worse than expected, we decided to vitaminise our algorithm by using some

techniques such as using different learning rates in each layer or adding a scheduler.

In the Figure 4.4 can be seen a diagram of the framework. Where we only test the behaviour of the
algorithm only by training this model on the labelled source data (generated), and when the model is

trained we use it to classify target data (real).
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4.2.2 Unsupervised Domain Adaptation

To carry out Unsupervised Domain Adaptation (UDA) we will use the network described in the State
of the Art (section ), DCAN [Li et al., 2020]. At a low level DCAN uses a Resnet-50 backbone with an

attention module that is trained using numerous training losses to achieve the desired feature alignment.

Due to the reduced number of classes, and the lack of reliability of the ground truth we decided
l

reg

to remove from the training loss the regularization loss of the 1-th feature L., which aims at solving
the over-correction problems caused by the added feature correction blocks with the guide of source

data [Li et al., 2020]. This what we called "Our Alignment”.

In the Figure 4.5 can be seen a diagram of the framework where we train DCAN using source data
with labels (generated) and using target data without labels (real), and when the model is trained we

use it to classify the target data (real).

Synthetic Data

GENERATOR L FAKE Generate‘d Dataset ResNet-50 _

Figure 4.4: Baseline framework.
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Real Data

Ca X CheXpert
PeerT Without labels /\.

7

ChestX-ray8
Without Labels )
>R
-

DCAN Classification
Unsupervised Domain Adaptation

Synthetic Data

GENERATOR | F A K Generated Dataset

cpD-GAN With labels
/\a
- a ?

Figure 4.5: Unsupervised Domain Adaptation framework.
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EVALUATION

In this chapter, we will analyze the evaluation results obtained in this project. It is divided into two
parts. Firstly we will analyze the methodology followed, analysing the framework, the metrics and the

environment used and secondly we will detail the results obtained in the different experiments.

5.1 Methodology

5.1.1 Framework

In this chapter, we will use the frameworks and algorithms detailed in the previous one. Once the
synthetic data has been generated following the diagram in Figure 4.2, we will evaluate the usefulness
of the synthetic data using a simple neural network (diagram in Figure 4.4) and Unsupervised Domain

Adaptation techniques (diagram in Figure 4.5).

Network configuration and parameters

We have decided to used the following network configurations and parameters, these parameters have

been chosen on the basis of other projects using similar architectures 12

Baseline network

Ir momentum weight_decay nesterov

First 2 epochs (only class layer) 0.01 0.9 1e-04 False
Next 10 epochs (all the network)  0.001 0.9 0 False

Table 5.1: Baseline parameters SGD optimizer.

1 Synthetic Medical Benchmark, Github, accessed 2022-05-11.
https://github.com/AugustDS/synthetic-medical-benchmark

2Domain Conditioned Adaptation Network, Github, accessed 2022-06-04.
https://github.com/BIT-DA/DCAN
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As we have explained in the previous chapter (Section 4.2.1) we have used a simple ResNet-
50 as baseline classifier, but as we will see in the result section we have several versions of the
network. Here we are going to detail the parameters of the simple version and the improvement
one (with or without schedule). The configuration with using the scheduler used is the same but
adding the scheduler with the default parameters, also is important to not that the scheduler used

is: torch.optim.Ir_scheduler.CosineAnnealingLR S,

As can be seen in the Table 5.1 the parameters of the SGD optimizer of the simple network are
divided in two times. First the parameters used in the first two epochs of the training, where only the
classifier layer is being trained. Secondly the parameters used during the next ten epochs, where all

the network is being trained.

Then, in the Table 5.2 and 5.3 we have the parameters of the improvement version. The improve-
ment version is exactly the same network but modifying the optimizer parameters and adding the mul-
tipliers to the learning rate and to the decay on each layer separately. More specifically in the Table 5.2
we can see the value of the multipliers, divided in the base network (all the network) and the classifier
head (only the last layers). And in the Table 5.3 can be seen the parameters of the optimizer divided as

the simple network ones.

Ir_mult decay_mult

base network 1
classifier layer 10

Table 5.2: "Baseline improvement” parameters per layer.

Ir momentum weight decay nesterov

First 2 epochs (only class layer) 0.01 0.9 1e-04 False
Next 10 epochs (all the network)  1e-04 0.9 5e-04 True

Table 5.3: "Baseline improvement” parameters SGD optimizer.

Lastly, we have the network configuration of the DCAN network used, both with the class alingment
and without it uses the same parameters. As before in the Table 5.5 we have the parameter multipliers
per layer and in the Table 5.4 we have the parameters of the optimizer, which are the same in all the

epochs.

Ir momentum weight_decay nesterov

1e-04 0.9 5e-04 True

Table 5.4: UDA parameters SGD optimizer.

3C0sineAnnealingLR, Pytorch, accessed 2022-06-19. torch.optim.Ir_scheduler.CosineAnnealingLR .html
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Ir_mult decay_mult

base network 1 2
classifier layer 10 2
class residual layer 0.01 2
feature residual layer 0.01 2

Table 5.5: UDA parameters per layer.

5.1.2 Metrics

In order to evaluate the performance of our models we will use the following metrics. Because the

datasets are highly unbalanced we have chosen metrics that are not susceptible to imbalances.

¢ Recall: This metric measure the percentage of positives samples in total that we are classi-

fying correctly.

TP
Recall = m——m (51)

e Balanced Accuracy: This metric allows us to calculate an estimate of how much data we
are classifying correctly, without being biased by class imbalance. It is defined as the average
of the Recall per class. Equation 5.2. This time we have used the version implemented by the

Sklearn library 4,

#classes )
o Recall(class;) (5.2)

BalancedAccuracy =

#classes

5.1.3 Environment

The final hardware used is summarised in Table 5.6. But is important to remark that due to the enor-
mous computational cost of training the GANs, sometimes we used another machine with a larger GPU,
24GB RTX Titan, as the 11GB RTX 2080 ti could not fit the model in memory. | would like to take this
opportunity to thank the EPS and VPULab for the availability of these machines.

Componente Caracteristicas
CPU Intel Core i9 10900k
GPU Nvidia RTX 2080 11 GB VRAM
RAM 32 GB
S.O. Ubuntu 20.04 LTS

Table 5.6: Table of technical details of the training and evaluation computer.

About the software we have used Python programming language with some of the most common

open source data science and deep learning libraries, the main ones are detailed in Table 5.7.

4Balanced Accuracy, Sklearn, accessed 2022-05-12. sklearn.metrics.balanced_accuracy_score.html
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Package Version
Pytorch 1.6.0
Tensorflow GPU  1.14.0
Numpy 1.19.1
Pandas 1.35
Sklearn 0.23.2

Table 5.7: Table of technical details of the training and evaluation computer.

5.2 Results of v1: No Finding VS Pneumothorax (binary)

In this section we will follow the same structure as in section 4.2, first we will detail the results obtained
without applying alignment and then we will show the results obtained using different types of align-
ments in Unsupervised Domain Adaptation. It is important to note that we will start by using only the
datasets version 1 with 0s, which is explained in detail in section 3.3, but after that, in the next section

we will show some results using other versions of the datasets.

5.2.1 Baseline - No Alignment

First, without alignment, as explained above, it is simply a matter of training a pre-trained ResNet50 in
Imagenet on the labelled synthetic data and then evaluating the performance of this algorithm on the
real CheXpert and ChestXray8 data.

We tested different versions of this network because as we can see in Figure 5.1(a) the training
curve without any improvement was very bad, we can observe a great overfitting in which we can

hardly appreciate an improvement in the validation data as the training progresses.

In the first improved version, we made some changes to the network, specifically we modified the
Learning Rate individually in each layer, lowering the Learning Rate of the backbone, which was trained
in Imagenet, and raising the Learning Rate of the classification head so that it would learn to classify
the X-rays better. We also added a scheduler to modify the Learning Rate of the network as it learned.
As we can see in Figure 5.1(d), the results improved considerably, although they were still not perfect,

now the network was at least learning little by little.

To analyse the contribution of each improvement we decided to carry out a small ablation study,
testing each contribution separately, as we can see in Figures 5.1(b) and 5.1(c), the most beneficial
modification was undoubtedly the Learning Rate per layer. And to finalize with the analysis of the
training process we have also keep the best validation result obtained in each version (Table 5.8), with

the epoch when it occurs and the training loss of that moment.
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Figure 5.1: Training curves baseline algorithm, numerical results in Table 5.8.
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When evaluating the model over other datasets, as we can see in Table 5.8, when we train these
networks using the synthetic data (remember that they have been generated based on CheXpert),
without any improvement we seemed to obtain the best results for ChestX-ray8, even better than CheX-
pert, thanks to the training curve we can see that this is a local minimum at the beginning of the network
training, which by chance gives us some good results, but they are not representative at all. The results
that start to make sense are once we have added the learning rate per layer improvement, where we
can see that the algorithm behaves better in CheXpert than in ChestX-ray8, a behaviour that is main-
tained with the rest of the versions. Also, as we can see in the final version with both improvements,
the algorithm generalises very well, even loses some performance if we look at the test data of the
synthetic dataset, but it is not representative. Finally, the results are better in the scheduler-only version
than in the different learning rate version, even though the curves of the latter looked better, this makes
it clear that we should certainly look at various evaluation metrics, in this case, the curves did not have
information on how the network would generalise on other data, they only looked at the behaviour on

synthetic data.

Different LR Scheduler Trained with Synthetic evaluated with: Synthetic Dataset Loss:
between layers Synthetic Chesxpert ChestX-ray8 | Validation Training
- - 100.00 % 55.71 % 64.15% | 0.374 0.382
v - 100.00 % 57.36 % 54.28 % | 0.371 0.322
- v 100.00 % 61.24 % 57.35% | 0.359 0.378
v v 99.15 % 63.31 % 56.42 % | 0.353 0.253

Table 5.8: Results supervised. Trained with Synthetic data using version 1 with Os. Including training
loss values.

However, if we look at the results obtained when training with the CheXpert data and the ChestX-
ray8 data (Table 5.9) we realise that these “improvements” were not that much, and that the best
versions are only adding the scheduler in the case of CheXpert and adding nothing in the case of
ChestX-ray8.

Different LR Scheduler Trained with CheXpert evaluated with: | Trained with ChestX-ray8 evaluated with:
between layers Synthetic CheXpert ChestX-ray8 | Synthetic CheXpert ChestX-ray8
72.90 % 75.32% 62.15% 62.75 % 65.04 % 66.58 %
v - 67.85 % 71.41% 5574 % 62.20 % 60.05 % 64.03 %
v 72.95 % 74.84% 63.83 % 61.90 % 61.69 % 65.52 %
v v 65.55 % 69.04 % 56.44 % 60.34 % 58.93 % 63.32 %

Table 5.9: Results supervised. Trained with CheXpert and ChestX-ray8 datasets version 1 with 0s.
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5.2.2 Using UDA

In this section we study the results obtained applying Unsupervised Domain Adaptation and we com-
pare them with the results of the algorithm presented in the previous section (without alignment). Also,
as introduced in the section 4.2.2 we have two versions of UDA algorithms, DCAN [Li et al., 2020]

(DCAN Alignment) and our modification of DCAN removing the class alignment (Our alignment).

We are more interested in evaluating how the algorithms behave on the real data, so for simplicity
we will only use the real data as target data, and we will also omit the results of using the same dataset
as target and source.

Taking all this into account, in Table 5.10 we can see the results obtained in each of the combinations
between source and target. As we can see the best option if we use synthetic images as source data
is Our UDA approach, while if we use real images as source data the best option is not to apply any
alignment. Also, as expected, when using CheXpert as target data, the best option is to use synthetic
images as source data, with quite a difference (=~ 8%). This is probably due to the fact that these
images have been generated with the GAN that was trained using CheXpert. On the contrary, when
using ChestX-ray8, the best option, although with very little difference (<2%) is to use the CheXpert
data, this makes sense as it is a larger dataset and probably contains more information. Finally, it
should be noted that we have not been able to run UDA using ChestX-ray8 as source and CheXpert as

target, the model always predicted the same class, thus achieving a 50% Balanced accuracy.

Lastly, looking again at Table 5.9 we can see the results obtained when training and evaluating with
the same dataset, with CheXpert and with ChestX-ray8. This helps us to know what would be a good
goal to achieve, to evaluate how good UDA is performing. As we can see, the best result we obtain
in the case of CheXpert is 75.32 %, while applying UDA we have managed to reach 73.98 % using
synthetic data and without using any real label, we have come quite close (-1.34%). In the case of
ChestX-ray8, training with the same dataset we reached 66.58 %, while applying UDA with synthetic
data we were left with 61.88 %, this time we were a little further away (-4.7%). We would get closer
by applying UDA using CheXpert, reaching 63.83% (-2.75%). This is a good way to check how the
experiments have turned out, and it seems that in this case it has been a success.
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Target Source Proposal Balanced Acc
No Alignment 63.31 %
Synthetic DCAN Alignment 73.03 %
Our Alignment 73.98 %
CheXpert
No Alignment 65.04 %
ChestX-ray8 | DCAN Alignment 50.00 %
Our Alignment 50.00 %
No Alignment 56.42 %
Synthetic DCAN Alignment 61.13 %
Our Alignment 61.88 %
ChestX-ray8
No Alignment 63.83 %
ChestXpert | DCAN Alignment 62.04 %
Our Alignment 61.84 %

Table 5.10: Summary of all results using version 1 with Os.

5.3 Results other experiments

In addition to the experiments shown using dataset version 1 (binary with 0s), we have tested many
other versions of the data, the results of which are detailed in this section. It's important to note that not
all the versions have the same experiments, that is so because we increase the number of experiments
depending on the results obtained in the previous ones, and if we detect that the results are not good
enough we continue with more promising versions. More detail about the different versions available in

the section 3.3.

5.3.1 Version 1: binary with Xs

In this case, we only have results with the CheXpert dataset. As we explained in the section on dataset
analysis, this is a much more complicated problem than the version with 0s, and this probably makes
the synthetic data not representative enought. As we can see in Table 5.11, the best result when
training with synthetic data is obtained without any type of alignment, reaching 54.96 %. This value is
far from the result obtained by training and evaluating on CheXpert, which reaches 80.38 %. Due to

these results, we abandoned this version and stopped doing experiments using it.
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Target Source Proposal Balanced Acc
No Alignment 54.96 %
CheXpert | Synthetic | DCAN Alignment 52.04 %
Our Alignment 53.46 %
CheXpert CheXpert | No Alignment 80.37 %

Table 5.11: Summary of results using version 1 (binary with Xs).

5.3.2 Version 2: No Finding vs All

Here something similar to the previous section happens, but the problem is even more difficult, so the
results are even worse. As we can see (Table 5.12) this time the best result using synthetic data is using
our alignment, reaching 52.94 %, far away from the 74.78 % obtained from training and evaluating on

CheXpert. Due to these results, we do not continue experimenting with other datasets here either.

Target Source Proposal Balanced Acc
No Alignment 5117 %
CheXpert | Synthetic | DCAN Alignment 52.61 %
Our Alignment 52.94 %
CheXpert CheXpert | No Alignment 74.78 %

Table 5.12: Summary of results using version 2 (No Finding vs All).

5.3.3 Version 3: four classes

With O0s

This version has more tests than the previous ones because as it is a version with zeros we expected

it to do well. In Table 5.13 we have results with both CheXpert and ChestX-ray8.

As expected, the results are not bad, but they are not too good either. In the case of CheXpert, UDA
works very badly, with DCAN failing to learn anything and always predicting the same class (that’s why
it gets 25 % correct), but without using UDA we managed to improve that 25 % t0 30.13 % (+5.13%).
Despite this improvement, we are still a bit far from the 41.5 % (-11.37%) obtained using CheXpert over
CheXpert. In the case of ChestX-ray8, the results are surprisingly better, using our UDA alignment we
achieved 30.34 %, which is a little closer to the ChestX-ray8 result of 36.74 % (-6.4%).
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Target Source Proposal Balanced Acc

No Alignment 30.13 %
CheXpert Synthetic DCAN Alignment  25.00 %

Our Alignment 28.07 %
CheXpert CheXpert No Alignment 41.50 %

No Alignment 28.54 %
ChestX-ray8 | Synthetic DCAN Alignment  27.73 %

Our Alignment 30.34 %
ChestX-ray8 ChestX-ray8 | No Alignment 36.74 %

Table 5.13: Summary of results using version 3 with Os (four classes).

With Xs

Finally, the version that we thought as the most difficult one, but in the end, we have discovered that it

is not so difficult. As we can see in Table 5.14 we obtain very similar results to those obtained in the

version 3 with 0s, staying even closer to the result obtained by training and evaluating with the same

dataset. In CheXpert, using DCAN we reached 29.28 %, which is a little closer than before to the
supervised result of 35.84 % (-6.57 %).

After obtaining these results we have meditated on why this version has a similar complexity to

the previous one and we believe it is because, as could be seen in Figure 3.12, when generating the

dataset we set the selected label to 1 and all other labels to X except the labels used by other classes

we are using, which we set to 0. This slightly eliminates the ambiguity of the dataset and probably that

is why this version is simpler than version 1 with Xs.

Target Source Proposal Balanced Acc
No Alignment 27.27 %
CheXpert | Synthetic | DCAN Alignment 29.28 %
Our Alignment 27.33 %
CheXpert CheXpert | No Alignment 35.84 %

Table 5.14: Summary of results using version 3 with Xs (four classes).
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6.1 Conclusions

As presented in the introduction, according to [Chen et al., 2021], a key challenge for applying Al in the
medical field is the representativeness of the data employed for training Al models and in this project
we have proved it. The results obtained in the binary with zeros dataset are good, so it seems like the

idea works, but as soon as the classification task start getting harder the problems begin.

This behaviour is probably because the synthesised data is very good visually but it is not able to
generate new information. It only compresses what we have and gives us different mixes. To the human
eye it is more than enough, but for a neural network to learn it is only useful for a simple problem, but
not enough for a more complex one. During this project, we have experimented using different versions
of the data, ranging from the simplest version to the most complex one and thus studying the degree of

representativeness of the data.

Regarding the use of Domain Adaptation algorithms, these seem to improve the results, but like
classical algorithms, they also require sufficiently representative data. Fortunately, the design of the
project allows the different parts to be modified as a block, so it opens the door to replace the data
generation model with a better performing one in the future, and to evaluate the Domain Adaptation

algorithms with these new data.

43



CONCLUSIONS AND FUTURE WORK

6.2 Future work

As mentioned in the conclusions, the main advantage of this work is that it is divisible into two parts that
can be interchanged as a block, one is the generation of data and the other is to study its usefulness
for training machine learning models. So it opens the door to experimentation as better approaches

emerging in the state of the art.

Based on the above, the first task suggested by the project would be to test with other data gen-
eration techniques that generate data with stronger statistical power, can be tested approaches using
another type of generative model such as transformers [Ramesh et al., 2021], autoencoders [Wan et al.,
2017] or even extracting images using medical simulators [Sujar et al., 2019]. Once we have sufficiently
representative synthetic data, the next natural step would be to test more complex versions of the data,

the ones presented here or even others using a larger number of classes.

On the other hand, in the classification models, Unsupervised Domain Adaptation is interesting, but
perhaps this approach could also use Inductive Transfer Learning, i.e. pre-training using a lot of labelled
synthetic source data and finishing the training using a few labelled real target data. But of course, in
order to apply this, the few labelled real data is needed. Finally, in case we have a few labelled real
data, can be also experimented with classical self-supervised algorithms, which we tried to do in this

work, but it was too time consuming and we decided to prioritise other experiments.
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