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Resumen

Las técnicas de Machine Learning son muy implementadas para clasificar imágenes.
Una de las principales desventajas de estas soluciones es que para realizar estas predic-
ciones, es necesario tener un gran conjunto de datos etiquetados con el que entrenar
el modelo. Sin embargo, hay campos en los que no hay muchas bases de datos etique-
tados, o las etiquetas son de baja calidad, como por ejemplo con datos médicos. Un
enfoque popular para trabajar con datos sin etiquetar es preentrenar el modelo usando
aprendizaje autosupervisado (SSL). Este pre-entrenamiento funciona dando a los datos
una pseudoetiqueta basada en una tarea que el modelo tiene que resolver.

En este trabajo, implementamos un pre-entrenamiento de SSL que combina secuen-
cialmente diferentes tareas pretexto. Entrenaremos nuestro modelo sobre la base de
datos SIIM-FISABIO-RSNA que contiene radiograf́ıas de pulmón. Con esto, queremos
comprobar si combinar diferentes tareas funciona mejor que usar solo una, aśı como
probar si esta solución puede adaptarse bien al campo médico. También representare-
mos los diferentes mapas de atención de cada modelo para que podamos comprobar
dónde centra la atención cada tarea.

Palabras clave

Aprendizaje auto-supervisado, Inteligencia artificial, Aprendizaje profundo, Mapas de
atención, Combinacion de tareas, Imágenes médicas

i



ii



Abstract

Machine learning techniques are widely implemented to classify images. One of the
main disadvantages of these solutions is that to perform these predictions, it is neces-
sary to have an extensively annotated dataset with which to train the model. However,
there are fields in which there are not many labeled databases, or the labeling has low
quality, i.e. with medical data. A popular approach to working with unlabeled data is
using Self Supervised Learning (SSL) pretraining. This pretraining is based on giving
the data a pseudo label based on a pretrain task that the model has to solve.

In this work, we implement a SSL pretraining that combines sequentially different
pretext tasks and train it over the SIIM-FISABIO-RSNA dataset of lung radiographs.
With this, we want to check if combining different tasks performs better than using
only one, as well as test if this solution can adapt well to the medical domain. We also
represent the different attention maps of each model so we can check where every SSL
task focuses the attention.

Keywords

Self supervised learning, Machine learning, Deep learning, Attention maps, Combined
tasks, Medical Image
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Chapter 1

Introduction

1.1 Motivation

The medical field is constantly evolving. It must be at the forefront of new techniques
that can help both medical professionals and patients. In an increasingly technolog-
ical world, these new technologies should be exploited by Medicine. Nowadays, this
technological transformation is making that all the data that previously was recorded
by hand, is transformed into digital mediums. Typical radiographs images that were
always recorded over a polyester film, nowadays can be stored in multiple formats in a
computer, making that the amount of data that we have in this field, has never been
so large.

Deep learning (DL) is one of the branches of Artificial Intelligence (AI) that has
seen exponential growth in recent years and benefits a lot from having these larges
amounts of data. Deep learning solutions yield close-to-human accuracy for challeng-
ing vision tasks, like classifying or detecting an object. These solutions rely on large
hand-annotated datasets to train the models. However, the labeling of these datasets
is a heavy burden and scarce and expensive expertise is required for high-quality an-
notation of some domains such as medical imaging. Self-supervised learning (SSL) has
proven to be a successful strategy to cope with this problem, as with SSL, the model
can learn from unlabeled data.

Even though the amount of medical data has never been so large, traditional DL
solutions require databases with various thousands or even millions of labeled data im-
ages to learn. Also, due to privacy regulations, medical data is difficult to obtain and
treat. With this in mind, the main objective of this work was to apply state-of-the-art
techniques based on SSL to a set of medical images. With this, we want to test the
feasibility of using these techniques over this specific data, and to search for the best
configuration of the used model for this problem.

This work has been possible thanks to the collaboration of the VPULab (Video
Processing and Understanding Laboratory), which provided us access to a GPU to
perform the experiments.

1



2 CHAPTER 1. INTRODUCTION

1.2 Objectives

This master’s thesis focuses on implementing an SSL model that combines multiple
pretext tasks in a sequential order to create a more complex and accurate visual rep-
resentation of the data. After this pretraining, a classification step is performed with
some labeled data, and we test its performance over medical images, specifically im-
ages from lungs. Upon literature reviews, and careful observations and discussions, the
following points are set to achieve within the scope of this master’s thesis.

• Collect a dataset of lung x-ray images for the objective of this master thesis.

• Perform semantic segmentation over it, to have both the full image and the
segmented one only containing the lung regions.

• Set up and run different self-supervised learning pretext tasks and check their
performance individually.

• Implement an SSL model that combines multiple pretext tasks in sequential order
and test its performance over the full and segmented data.

• Obtain results from the training of this model and compare between tasks and
type of images.

• Visualize where the models are focusing their attention to perform a quality
analysis.

• Search for an optimum sorting of the pretext tasks for the targeted task.

1.3 Report structure

This report has the following chapters

• Chapter 1 Introduction: Motivation and thesis’ objectives. In this chapter, we
give an overview of the thesis.

• Chapter 2 Related work: Basic concepts about medical imaging, its problems,
deep learning, and how it may benefit the medical field. In this chapter, we talk
about current trends in Deep learning that we used, as well as, talk about the
proposed database.

• Chapter 3 Design and development: In this chapter, we explain how we imple-
mented the proposed solution for this project.

• Chapter 4 Experiments and results: In this chapter, we explain the different
experiments that we performed for this project as well as the obtained results.

• Chapter 5 Conclusions and future work.



Chapter 2

Related Work

State-of-the-art deep learning techniques often require training over large and varied
datasets. If not, the trained model may not be able to learn quality visual represen-
tations. Therefore, not having enough data for your specific task is the main point of
not using deep learning techniques for solving the problem.

Acquiring this data usually is an expensive process in which multiple steps need to
be performed before is ready to be used by a model. One of the most extensive and
tedious steps is labeling the data. This process is even harder when the data is from
a field in which is necessary an expert to perform the labeling. Therefore, obtaining a
big and varied database of medical images is expensive and complicated.

To surpass this problem, most of the models are pretrained in general-purpose
datasets with lots of labeled data, like the Imagenet dataset, which is an image database
containing more than fourteen million annotated images with more than twenty thou-
sand categories [8], and then fine-tuned with the target data, thus achieving that the
model has already some information about how to interpret the images and making
our training faster and more efficient.

In this chapter we explore more in-depth how to obtain medical images as well as
why is useful to analyze them (Section 2.1). After that, we explain how deep learning
solutions are used for different tasks like image classification (Section 2.2) and how
these methods can be applied to medical images along with the limitations that this
field presents (Section 2.3). Then, we present the state-of-the-art approaches that are
used to solve the mentioned problems (Section 2.4). Finally, we present the evalua-
tion frameworks that we used to validate this project, being these the contemplated
databases and the evaluation metrics (Section 2.5).

2.1 Automatic Medical Image Analysis

Most medical issues occur inside the body, so making a diagnosis can be challenging.
Being able to take an image from inside the body has become easier over the last
century. Medical imaging is the technique of producing visual representations of areas
inside the human body to diagnose medical problems and monitor treatment. Some
examples of different types of medical images are radiography, magnetic resonance

3



4 CHAPTER 2. RELATED WORK

Figure 2.1: Radiography from a thorax. We can see white in the hardest tissues (bones)
and black in the lungs.

imaging (MRI), ultrasound, and nuclear medicine. For this work, the method that we
analyzed is the radiographs.

Radiography uses electromagnetic radiation to take images from the inside of the
body. The most common form of radiography is the x-ray. For this procedure, an x-ray
machine beams high-energy waves onto the body. The soft tissues, such as skin and
organs, do not absorb these waves, whereas the hard ones like bones do absorb the
waves. The machine transfers the results of the x-ray onto a film, showing the bones
in white and leaving the unabsorbed materials in black. We can see an example of
radiography in Figure 2.1.

Thanks to being able to capture these images, doctors are capable to detect some
diseases faster than if they had to rely upon older approaches. For example in the case
of suffering pneumonia, there are cases in which we can detect at first sight that there
is something atypical (Figure 2.2). To search for these oddities, typically an expert
doctor needed to analyze them, to know the source of the disease. After it, the doc-
tor had to consider whether it was the right decision without supporting information.
Even though there still needs to be doctors to perform the final diagnosis, every day
there are more support tools to help the doctors do their diagnosis, speeding up the
whole process. Some of this solutions are explained more in-depth in the Deep learning
solutions for medical images Section (2.3).

2.2 Deep Learning and Image Processing

Artificial intelligence (AI) refers to the ability of machines to learn how to perform a
task, without specific indications provided by their designer. Machine learning (ML), is
a subset of AI in which the algorithm that gives intelligence to the machine try to learn
data patterns as it is exposed to more data over time. Finally, deep learning (DL) is a
subset of ML in which a multilayered neural network learns from a vast amount of data.
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Figure 2.2: Radiography from three different thoraces, in which we can see white
opacities inside the lungs that are not present in the healthy patient.

In recent years, deep learning has become more and more popular in research and
has been incorporated into a large number of applications, including image classifica-
tion, video recommendation, social network analysis, natural language processing, and
so forth. [9, 10, 11]

One of the most popular and used architectures of deep neural networks are the
convolutional neural networks (CNN) [12, 13, 14]. A CNN can learn convolutional fil-
ters with which it can obtain efficient visual representations from the input data. The
CNN convolves the learned features with the input data employing 2D convolutional
layers, which makes this architecture suitable for processing 2D data, such as images.
These networks’ real strength is the ability to perform feature extraction from images
without any need to explicitly program them to extract them. We can see an example
of how CNN works in Figure 2.3 for a classification task. As we increase the number of
layers that conform to the network, this gains complexity. The first layers can recog-
nize simpler patterns as geometrical shapes, colors, or borders, while the deeper ones
recognize more complex forms. As the complexity is increased, the capacity to obtain
visual representations and the time the network requires to learn also increase.

We can increase the complexity of a model by changing the architecture of the
model itself (i.e. AlexNet [8], VGG [15], ResNet [16], Inception [17], etc) or building a
deeper model [15]. When building these more complex models, the number of parame-
ters tends to increase along with the complexity of the model, which may be better for
some complex problems but worse if we need our model to train fast. We can see this ef-
fect in Figures 2.4 and 2.5, and it increases, even more, when the depth of the net raises.

Alternatively, another way to improve the accuracy is by building a hybrid model
by either combining different architectures or by using the same network trained mul-
tiple times with different initialization [18, 19].

Convolutional neural networks’ performance has been proven in different scenarios,
in which they exceed or are proximate to human performance [20, 21]. Current state-
of-the-art on Imagenet [8] classification is over 90% as we can see in Figure 2.6 while
a trained human annotator has an error rate of the 5,1% [22]. Even though humans
can perform better in this task, another potential of CNN is the amount of time they
need to do their prediction. Human annotators take 6 seconds on average, while CNN
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Figure 2.3: Example of a network with many convolutional layers. Filters are applied
to each training image with different resolutions, and the output of each convolutional
image is used as input for the next layer.

Figure 2.4: Comparison between different architectures over Imagenet [1]

takes a couple of milliseconds. This gives deep learning models the capacity to be
implemented in applications that require above human performance in time.

2.3 Deep Learning for Medical Images

Research in deep learning solutions for medical images bears many promises to improve
patients’ health. However, some challenges are slowing down the progress of the field,
such as the limitations of the data, the biases, or the difficulties to share patients’ infor-
mation. As this work uses X-rays, in this section we explain various kinds of radiologic
applications.

2.3.1 Deep Learning Challenges

While deep learning has seemingly limitless potential to gather new insights from med-
ical images, implementing the technology in clinical settings comes with some major
barriers. The two main problems that medical imaging faces are the lack of quality
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Figure 2.5: Top-1 models accuracy vs. computational complexity (# of parameters).
[2]

Figure 2.6: Imagenet benchmark
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Name Number of images
CheXpert 224,316
ChestX-Det-Dataset 3,578
NIH Chest X-rays 112,000
Segmentation in Chest Radiographs 247

Imagenet 14,000,000

Table 2.1: Comparison between the number of training images between medical
datasets and Imagenet

databases, with a big enough training dataset, and the difficulty to share this data
because of the privacy regulations [23]. A comparison between medical and other fields
databases can be found in Table 2.1.

Structured, text electronic health record data are comparatively easy to aggregate
and de-identify (prevent someone’s identity from being revealed). Such data are com-
monly shared by health organizations with service providers or partner facilities for
quality assessment or analytics. On the other hand, the distribution of medical images
requires explicit patient consent.

2.3.2 Image Classification

Image classification is useful to radiologists for a wide range of applications from deter-
mining the presence or absence of disease to identifying the type of malignancy. Some
works prove the efficiency of several CNN helping in the diagnosis of several diseases
like retinopathy and skin cancers [24, 25]. One problem that deep learning models face
while training with images is the complex patterns that these present. To learn faster
these patterns, state-of-the-art solutions perform a pretraining over the network (ex-
plained in Section 2.4). Some works use the features obtained by the CNN to replace
the radiomics from current models [26, 27]. Radiomics is a method that extracts a
large number of features from medical images using data-characterization algorithms
[28]. These features, termed radiomic features, are used to predict different complex
diseases.

2.3.3 Object Detection

Object detection is identifying and locating objects in an image. In biomedical images,
a detection technique is also performed to identify the areas where the patient’s lesions
are located as box coordinates. Object detection is split into two types. One is region-
based, which consists of selecting different patches from the image and detecting the
object inside these [29]. The other consists of using a one-stage network that performs
directly the finding and detecting bounding box and probability from the image [30].
These solutions are generic for every object detection problem, but there are multiple
solutions performed for specific medical image-related topics.

One of the main challenges in microscopic image analysis comes from the need of
analyzing all individual cells for accurate diagnosis because the differentiation of most
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disease grades highly depends on the cell-level information. Cireşan et al. [31] used
deep CNN to detect mitosis in breast histology images. Su et al. [32] used sparse
auto encoders and sparse representation to detect and segment cells from microscopic
images. Xu et al. [33] also used sparse auto encoders to detect cells on breast cancer
tissue images.

2.3.4 Image Generation

As stated at the beginning of the chapter, one of the main problems that using deep
learning solutions with medical images, is the lack of labeled data as well as privacy
issues. To overcome this issue, several studies exploit GANs (Generative Adversarial
Networks) [34] to make realistic synthetic images of whole X-rays or regions of interest
of specific lesions, such as liver or lung cancer [35, 36].

2.4 Training Trends With Limited Data

In this section, we explain different improvements that were applied to classic models
to overcome the stated problems in Section 2.3. One of the most used techniques for
the training of big models if there is not enough data available is transfer learning.
This aims at improving the performance of target learners on target domains by trans-
ferring the knowledge from similar fields and it is often used when data is scarce or
full-scale training is too costly [37, 38, 39]. These pretrained models are usually trained
in big databases such as Imagenet. After you have a pretrained model, you adapt it
to your dataset by training again over your target data. This whole process is called
fine-tuning. However, one of the biggest limitations to transfer learning is the problem
of negative transfer. Transfer learning only works if the initial and target problems
are similar enough. If the problems are too different, the model may perform worse
than if it had never been trained at all. For this, is usually a good idea to train over
a big and varied database. Another problem transfer learning carries is that the bias
from the initial target is also learned by the model. It has been proven models trained
at Imagenet tend to focus their attention in the center of the image, as most of the
regions of interest in this database are placed there (see Figure 2.7), or in the object
texture more than its shape [40, 41].

2.4.1 Self-Supervised Learning Tasks

A popular approach to dealing with insufficient data is Self-Supervised Learning (SSL)
pretraining. Self-supervised learning is a machine learning technique that relies on pre-
text tasks, which are problems that can be formulated using only unsupervised data.
A pretext task is designed in a way that solving it requires learning a useful image
representation [42, 11], therefore making it easier for the model to be trained over data
that is similar to the one used to solve the SSL task. In this subsection, we explain
different SSL pretext tasks.

We can split the SSL tasks into two main groups: contrastive and non-contrastive
methods. Contrastive [43] methods work by contrasting samples against each other
to learn attributes that are common between data classes and that set apart a data
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Figure 2.7: Random samples of human attention (column 2) vs machine-generated
attention (columns 3-5). [3]

class from another. Chen et al. [44] proposed a contrastive method, which is based
in the Momentum Contrast (MoCo) method proposed by He et al. [45]. This method
works by assigning to every image a key, like in a dictionary. The key generated is
the output of that image from a convolutional neural network (a vector). To check the
similarity between two images and let the model learn, an image would be sent as a
vector and would be assigned to the nearest key (it would be necessary then to have
a way to calculate distances (see Figure 2.8c). Caron et al. [46] propose another con-
trastive method named SwAV (Swapping Assignment between Views). This method
has the advantage over other contrastive methods because it does not have to compute
comparisons between pairs. The method consists of taking an image, performing aug-
mentations, and clustering them in a way that they are next to each other (see Figure
2.8d).

There are also non-contrastive methods, which do not try to compare pairs of im-
ages and search for solving a task that can be formulated with only one image. Doersch
et al. proposed a method that trains a CNN model using the spatial information from
the image. This task works by predicting the relative location of two randomly sam-
pled non-overlapping image patches [47] (see Figure 2.8b). They claim that solving well
this task requires that the model learns to recognize objects and their parts. Gidaris
et al. suggested another method that does the training by rotating an image a certain
amount of degrees and then using the transformed image as input. The model task is
to predict the degrees that an image had rotated [48] (see Figure 2.8a). We can see in
Table 2.2 a comparison of how some of these SSL tasks perform over imagenet.
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(a) Rotation prediction pretext task (b) Relative location pretext task

(c) MoCoV2 pretext task (d) SwAV pretext task

Figure 2.8: Different SSL pretext tasks

Training method Accuracy over Imagenet
Supervised 77.15%
MoCoV2 83.2%
Swav 75.3%

Rotation prediction 70.87%

Table 2.2: Different SSL tasks evaluated over imagenet classification problem
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2.4.2 Curriculum Learning

One popular method to deal with data that our model is not able to learn effectively
is relying on curriculum learning. The idea of curriculum learning comes from the fact
that concepts are easier to learn when seen in an orderly manner. This was implemented
for machine learning algorithms by Elman et al. [49] and Bengio et al. [50], making the
main idea to learn easier aspects of the problem earlier while gradually increasing the
difficulty. There are also more general methods that do not require labeling the training
data as harder or easier, e.g. supervising the learning by a teacher network (teacher-
student) [51] or taking into consideration the learning progress of the model (self-paced
learning) [52, 53]. This is different from the idea proposed by Bengio et al. [50] in the
way samples are evaluated, as in this method the difficulty is measured during training.

Curriculum learning can be implemented along with SSL or transfer learning, as it
only considers how the data is presented. Several works join these learning methods
[54, 55, 56] and prove that the performance is increased with respect only using SSL
or transfer learning.

2.4.3 Attention Maps

Visual attention refers to our capacity to focus our attention on an explicit region of
our vision. When we are training a neural network, we need a way for it to explicitly
incorporate the concept of visual attention. It needs to be able to learn where is the
most important place to look to make distinctions between objects. Several works im-
plement different methods to explicitly add attention to a model [57, 58, 59]. However,
there is also implicit attention in every model, and there is no need to implement new
modules to visualize it. The main idea behind being able to know where the model is
focusing its attention is to use the intermediate layers (usually next to the final layers
of our model), which contain visual representations relevant to performing the final
classification and being able to relate them to the original image.

There are multiple ways of visualizing the model’s attention [60, 61, 62]. However,
one of the more popular methods is obtaining the class activation map (CAM) [63].
These maps are generated from the final convolutional layer of CNN. They can highlight
discriminative object regions for the class of interest.

2.4.4 Multiple SSL Task Training

In this subsection, we explain different approaches to solving the problem of classify-
ing medical images. As we stated in Subsection 2.4.1, one of the current trends to
solve problems in which there is a lack of labeled data is using self-supervised learning.
Creating a model pretrained using this technique has been explored in several papers
[64, 11, 42]. However, to add a layer of complexity to this solution some works pro-
pose to combine different pretext tasks [4, 65, 66, 67]. Different pretext tasks focus
their attention on different areas of the image [68]. The intuition behind proposing a
combination of pretext tasks is that the different information that each pretext task
contributes may give a better pretraining than the information from only one.
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Pre-training ImageNet top1 ImageNet top5 PASCAL NYU
Prev. Ours Ours Prev. Ours Ours

Relative Position 31.7 36.21 59.21 61.7 66.75 80.54
Color 32.6 39.62 62.48 46.9 65.47 76.79
Exemplar - 31.51 53.08 - 60.94 69.57
Motion Segmentation - 27.62 48.29 52.2 61.13 74.24
INet Labels 51.0 66.82 85.10 69.9 74.17 80.06

Table 2.3: Comparison of Doersch and Zisserman implementation with previous results
on the evaluation tasks: ImageNet with frozen features (left), and PASCAL VOC 2007
mAP with fine-tuning (middle), and NYU depth (right).[4]

Figure 2.9: The structure of the multi-task network from [4]. It is based on ResNet-101
and each SSL task head is attached to the output of the network.

Doersch and Zisserman [4] after comparing four different self-supervised tasks in-
dividually, they combined them and trained a network with them joined. The method
they proposed to do this combined training was to train the models in the different
tasks and do a combined backpropagation to update the parameters. This process was
done at batch size, i.e. each time a batch of training data is processed by every SSL
task, they updated the network with a combination of the gradients. We can see in
Figure 2.9 a diagram of the network. In contrast with our work, they trained their
model over three different large datasets, Imagenet [8], PASCAL VOC [69], and NYU
depth prediction [70] which have different objectives. We can see how the individual
SSL task performed on each of these datasets in Table 2.3, while in Table 2.4 we can
observe the performance of combining different SSL tasks. They begin all their com-
binations with the relative position task as the base task, as it is the one with a better
performance individually. The results seen in these tables indicate that combining SSL
tasks improves the performance regarding using only one.

Another method for pretraining a model with multiple SSL tasks was proposed by
Kirill et al. [65]. In this work, they propose to train the same backbone by changing
the SSL heads. The main difference is that in this work, the moment in which the
SSL task is updated is when the model has been trained with the whole dataset. They
tested this concept over the ISIC-2019 dataset [71, 72], which contains images of skins
lessons from 8 different categories. In Table 2.5 we can see that with their method,
they were able to beat the winner of the ISIC-2019 challenge, and as we can see with
the column δ, most of the SSL tasks improve when combined.

Our work follows the steps performed in Kirill et al. paper, as the data target from
their work is in the medical field as well as ours (Section 2.5). With this work we want
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Pre-training ImageNet PASCAL NYU

RP 59.21 66.75 80.54
RP+Col 66.64 68.75 79.87
RP+Ex 65.24 69.44 78.70
RP+MS 63.73 68.81 78.72
RP+Col+Ex 68.65 69.48 80.17
RP+Col+Ex+MS 69.30 70.53 79.25

INet Labels 85.10 74.17 80.06

Table 2.4: Comparison of various combinations of self-supervised tasks. Abbreviations:
RP: Relative Position; Col: Colorization; Ex: Exemplar Nets; MS: Motion Segmen-
tation. Metrics: ImageNet: Recall@5; PASCAL: mAP; NYU: % Pixels below 1.25.
[4]

1st task 2nd task 3rd task
Balanced
accuracy

(%)
δ (%)

Better
than

ImageNet
- Rel. loc. 69.52 - No

(AC) Rel. loc. ODC 70.68 1.16 No
(MC) Rel. loc. ODC MoCo v2 75.00 5.49 Yes
(C) Rel. loc. MoCo v2 74.10 4.58 Yes

(MC) Rel. loc. MoCo v2 ODC 74.38 4.86 Yes
- MoCo v2 72.74 - No

(AC) MoCo v2 ODC 72.72 -0.02 No
(MC) MoCo v2 ODC Rel. loc. 67.00 -5.74 No
(AC) MoCo v2 Rel. loc. 66.72 -6.02 No
(AC) MoCo v2 Rel. loc. ODC 69.80 -2.95 No

- ODC 63.52 - No
(C) ODC Rel. loc. 68.23 4.71 No
(C) ODC Rel. loc. MoCo v2 73.36 9.84 No
(C) ODC MoCo v2 75.44 11.92 Yes

(MC) ODC MoCo v2 Rel. loc. 65.73 2.21 No
ISIC-2019 challenge winner [73] 72.5 ± 1.7 - -

Supervised ImageNet 73.76 - -
No pretraining 49.27 - -

Table 2.5: Top accuracies for the Sirotkin et al. work. The column ”δ” indicates how
the performance of a combination of pretext tasks differs from an individual pretext
task. The left-most column shows whether a combination follows Curriculum (C),
Anti-Curriculum (AC) or Mixed Curriculum (MC) ordering. [65]
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to test if this approach can be used over X-Ray images from lungs, and have a good
performance, comparing it with state-of-the-art models and techniques. We searched
for the optimum hyper-parameters for this classification task and tested different SSL
task positions to achieve better performance. We also implement a segmentation of
the lung area, as the data that we used may be biased towards regions outside of the
lungs. This is explained more in detail in further sections (Section 2.5). Finally, to
qualitatively measure the performance of our model we implemented attention maps
so we can check if the model attention is inside the lungs area.

2.5 Evaluation Frameworks

In this section, we expose different datasets of lung X-Ray images, the dataset in which
we performed our experiments, and some works that have been realized over it.

As explained in Section 2.3 current medical databases are difficult to work with be-
cause they present some explicit challenges in this field. Regarding the accessibility to
these databases, most of them ask to indicate what are our purposes with the database
and do not allow commercial use from it. Regarding the lack of quality datasets, as we
mentioned in Table 2.1 in Section 2.3, the amount of data most of the datasets have is
not enough for Deep Learning solutions.

The images come all from patients that tested positive for COVID-19. The data
was obtained from the SIIM-FISABIO-RSNA COVID-19 Detection dataset [74]. This
is provided by the Society for Imaging Informatics in Medicine (SIIM) and consists of
identifying and locating pneumonia abnormalities on chest radiographs from COVID-
19 patients, and classifying them into four groups: negative for pneumonia, typical,
indeterminate, or atypical. However, in this work we are not solving a detection task,
so we changed the dataset labels for it to be only a classification problem. We can
see a description of each label in Table 2.6. so The SIIM-FISABIO-RSNA dataset
training data consists of 6,334 chest scans in DICOM format (Digital Imaging and
Communication In Medicine) with 79% COVID-19 positives and 21% COVID-19 neg-
atives and is made up of the other two datasets, the BIMCV-COVID19+ [75], and the
MIDRC-RICORD [76]. All of the training dataset images were de-identified to protect
patient privacy. A panel of expert radiologists labeled the images. For the creation of
this dataset, the images from the BIMCV and MIDRC-RICORD were preprocessed,
deleting images that were taken from the lateral of the chest, as well as the images that
do not have a DICOM image associated information. The two bigger classes negative
and typical account for about 75% of the total number of samples. Indeterminate and
atypical samples account for the remaining 25% of samples. Only 600 of these 6,334
images are from the MIDRC-RICORD dataset.

The BIMCV dataset, where most of the images from SIIM-FISABIO-RSNA come,
is one of the biggest COVID-19 related datasets, and has a multitude of works around
it that try to predict the diseases in the lungs [77, 78, 79]. However, all this work
detects the same flaw in the dataset, and as DeGrave et al. [80] represents by perform-
ing different experiments (Figure 2.10), it is biased toward the external lungs area.
These zones may add information to the model, that could be able to learn about the
age or gender of the patient, and do its prediction based on this information more
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Label Medical Meaning

Negative for
pneumonia

No findings of pneumonia.
However, chest radiographic findings
can be absent early in the course of COVID-19 pneumonia.

Typical
appearance

Findings typical of COVID-19 pneumonia are present.
However, these can overlap with other infections,
drug reactions, and other causes of acute lung injury.

Indeterminate
appearance

Findings indeterminate for COVID-19 pneumonia and which
can occur with a variety of infections and noninfectious conditions.

Atypical
appearance

Findings atypical or uncommonly reported for COVID-19 pneumonia.
Consider alternative diagnoses.

Table 2.6: Labels from the SIIM-FISABIO-RSNA COVID-19 dataset and their mean-
ings

Experiment F1 Score Acc. (%)
Baseline: DenseNet121 0.4205 ± 0.0149 57.34 ± 2.79
MoCo-V2 0.4583 ± 0.0168 58.60 ± 1.69
L/R targeted inpainting 0.4794 ± 0.0327 61.77 ± 2.28

Table 2.7: Results from the Ridzuan et al. [7] methods

than focusing on the area of interest for these works, the lungs. As most of the SIIM-
FISABIO-RSNA data come from the BIMCV dataset, this bias towards the outside of
the lungs is transferred to the SIIM-FISABIO-RSNA dataset. This bias can be caused
because of the information that is inside of the image, like the gender of the patient or
their age, or it could be caused by the machine that was used to take the images, that
may add information to the pixel values that the model may be taking advantage of.

As the dataset we are using is labeled as an object detection problem, there are not
many works that focus on the classification task. However, Ridzuan et al. [7] perform
a classification using also a SSL approach, along with other methods. They used a
Densenet-121 [81] as a backbone model and implemented different SSL tasks, such as
MoCo-V2 or the inpainting method [82]. They also implemented various methods of
data augmentation, such as mirroring the lungs or replacing them with the lungs from
another image. However, these augmentations tend to worsen the performance (in
Figure 2.11 we can see some examples of bad augmentations). Finally, they trained
their model over the CheXpert dataset [83], which has much more training data than
the SIIM-FISABIO-RSNA dataset. We can see some of the results they obtained in
Table 2.7.
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Figure 2.10: Model’s attention over the chest image to perform the classification. We
can see in some examples that it focuses a lot outside of the lungs. Figure obtained
from the original report [80]

Figure 2.11: Failures in (a) mirrored lung augmentation and (b) lung replacement
augmentation.
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Chapter 3

Design and development

In this chapter, we explain the solution that we implemented along with all the decisions
made for this project. This chapter is divided into three main sections. In Section 3.1
we explain the different parts our model has and how they were implemented. In Section
3.2 we explain the followed process to preprocess the data. Finally, in Section 3.3 we
explain the methods that we used to evaluate and compare our models. In Figure 3.1
we have an overview of all the modules that conform the complete implementation. All
the development for this project was performed in the programming language python3
[84].

Figure 3.1: Diagram of the complete implementation conformed by a Segmentator, the
model pretrained over different SSL tasks and finally the output.

19
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3.1 Training Scheme for Curricular Self-Supervised

Learning

In this work, we want to build and train a model that performs a classification using
lung radiographs. As we explained in Section 2.4, we have followed the idea proposed
by Kirill et al. [65] to check the feasibility of their method over a different dataset. We
can see in Figure 3.2 the training scheme that they proposed. The main characteristic
of this training scheme is that it keeps the backbone architecture and changes the last
layers to change the SSL task the model is training to, and we can add as many SSL
tasks as we want. We call these last layers heads. Each head serves a different purpose,
as they correspond to the different SSL tasks. The weights of the model are kept when
changing heads, so each consecutive task updates the weights from the previous ones.
As explained in Section 2.4, the intuition behind this is that the information of the
different tasks complements each other. After the model has been pretrained with the
tasks that were configured, there is always a classification head at the end, which is
used to train the model to classify the target data. For both, the pretraining and the
final training we use the complete dataset.

Figure 3.2: Training scheme proposed by Kirill et al. [65] which uses different SSL task
to pretrain the model to perform a final classification.

3.1.1 Model’s Implementation Using Python

To perform all the steps in this work we created a model that trains over N different
pretext tasks and finally performs a classification. We implemented this model using
the programming language python.

As the implementation of the different pretext tasks is out of the scope of this work,
we decided to use a framework that can be configured to perform different training with
multiple pretext tasks. The chosen framework is the MMSelfSup [85] which is an open-
source self-supervised learning toolbox based on PyTorch [86]. This framework is based
on OpenSelfSup and is part of the OpenMMLab project. With this framework, we can
design the model’s backbone architecture and pretrain it over different SSL pretext
tasks.

This framework works with configuration files written in python. In these config-
uration files, we can specify the different hyper-parameters that our model uses, like
the batch size, Learning Rate (LR), epochs, etc. We can also define the different data
augmentation that we want our model to perform over the data. Using these configu-
ration files we automated the search of the LR for every step of the training. Previous
to training the model using a complete number of epochs we train it with a reduced
number with different LRs. The number of epochs that the model has to train to select
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Resnet-50 DenseNet-121
Trainable parameters 23 M 9 M
Accuracy Imagenet 77.15% 74.98%

Table 3.1: Number of parameters and accuracies over Imagenet for the two models.

the optimum LR has to be enough to decide between the different LRs. To search for
this LR we train the model with the complete dataset. The number of epochs, for the
search and the training, and the LR ranges that we used are detailed in Chapter 4.

3.1.2 Model’s Backbone

As we explained in Section 2.3, there are different architectures for building a model
and selecting one that molds to the problem is one of the most important decisions
to make before tackling the problem. In this section, we explain the decisions made
regarding the network as well as the different modules it is conformed by.

We consider two different architectures to act as the backbone of our model: DenseNet-
121 [81] and Resnet-50 [16]. We thought of these two architectures because DenseNet-
121 is used for medical image classification in plenty of works [87, 88, 89, 90], and
Resnet-50 is one of the more popular architectures for all kinds of DL solutions [91,
92, 93]. As we can see in Table 3.1 DenseNet-121 has less trainable parameters than
Resnet-50. However we decided to use Resnet-50 as DenseNet requires a significant
amount of GPU memory, and the available GPU is limited by this. Each DenseNet
layer is connected to all previous layers. Because features accumulate, the final classi-
fication layer has access to a large and diverse feature representation. As well, as these
features accumulate we need to save them in memory and this makes that the amount
of GPU memory needed grows exponentially [94]. As we intend to do several trainings
for searching hyperparameters and training the model, having such a heavy backbone
is not feasible.

3.2 Data Preparation

Many factors affect the success of Artificial Intelligence on a given task. The represen-
tation and quality of the instance data is first and foremost. This also applies to Deep
Learning tasks, in which training with noisy images or having different ranges for pixel
values may affect the model’s learning. In this section, we explain the preprocessing
we performed over our initial data to improve the learning of our model.

3.2.1 Lung Segmentation

As mentioned in Section 2.5 the dataset that we used is biased towards the outside of
the lungs, making the model use the information that is not inside of the lungs region to
make the final prediction. To avoid this we created a version of the data that extracts
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the background from the image and uses only the lungs to train. We performed all the
experiments with the original version of the data (the complete images) and with the
segmented version. Using both data we are able to check how much the region outside
the lungs affects the final prediction. This is important because we want to avoid all
the information that may not be replicated in other experiments, i.e. we can not assure
that all the capture systems take the information from outside of the lungs.

To perform this segmentation, we configure the solution proposed by Selvan et
al. [5] in which they use a U-net type model [95] with an encoder-decoder archi-
tecture and a variational encoder for data imputation, as shown in Figure 3.4. To
execute this we used the model’s weight that they hand in their github page (https:
//github.com/raghavian/lungVAE/tree/master/saved_models). After preprocess-
ing we get the mask that the model predicts, and one post-procesed which has less
errors, like for example out-layers. We can see an example of this in Figure 3.3.

Figure 3.3: Differences between the original mask and the post-processed one.

Figure 3.4: Overview of the proposed model for segmentating the lungs. Obtained
from [5]

3.2.2 Format Details

As mentioned in chapter 2, the data provided in the SIIM-FISABIO-RSNA dataset is
in DICOM (Digital Imaging and Communication In Medicine) format. DICOM [96, 97]
is a standard used mainly for sharing medical images. Even though this format can
collect plenty of information regarding medical imaging, for our model to be able to
read the input images, it is necessary to transform them into a format in which the

https://github.com/raghavian/lungVAE/tree/master/saved_models
https://github.com/raghavian/lungVAE/tree/master/saved_models
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images’ pixels are represented as a number, like PNG (Portable Network Graphics)
[98]. To do this we use the pydicom library [99], which allows us to work with the
DICOM format in the python programming language. With this library, we transform
the SIIM-FISABIO-RSNA database images into PNG.

After transforming the images from DICOM to PNG, we proceed to segment the
images, separating the lungs region from the background. Finally, it is necessary to
perform a normalization step. Normalization consists in project the pixel values from
an image into a predefined range (i.e. usually [0, 1]). Not normalizing would imply that
the weights from your network, are multiplied by pixel values of large magnitudes, and
this would force the neuron to saturate. This is performed by subtracting the mean,
µ, of each feature, x, and a division by the standard deviation, σ (Equation 3.1).

x :=
x− µ

σ
(3.1)

3.3 Evaluation Metrics

In this work, we test the performance of the model in two ways. Quantitatively, by
comparing the mean accuracy over the final classification task of the model with dif-
ferent pretraining. As the classes from the database are imbalanced, we need to see
the mean accuracy of all the classes. Qualitatively by comparing the attention maps
of the models that used the complete images, and the ones that used the segmented
images.

3.3.1 Attention Maps

To check where the model is focusing its attention to make a prediction, we imple-
mented a module that returns a class activation map (CAM) [63]. However, CAM
has a drawback, as to be able to create a CAM the network architecture is restricted
to have a global average pooling layer after the final convolutional layer, and then a
linear (dense) layer. This makes that CAM can not be used on architectures that have
multiple fully connected layers at the end of the network, such as AlexNet and VGG-19.

We can see an image of a lung with its activation map in figure 3.5. This activation
map works by forwarding the image we want to check through our model. Then we
get the signals from the prediction layer and map them to the last convolutional layer.
Finally, we resize this last layer with the weights associated with the predicted class to
match the input image and being able to see where the model’s attention is.

To compare between models if they are focusing their attention on the lung region,
we implemented a quantitative metric that checks the intensity of the Attention values
that lay Inside the Lungs (AIL). To get the AIL we sum all the values from the extended
CAM (Attention in the complete image) and the values from the extended CAM that
are inside the lungs (Attention inside the lungs). We can see this same concept in
Equation 3.4. As these values are larger where the model attention is focused if we
divide the value obtained from inside the lungs by the total we get a percentage of how
much attention is inside the lungs.
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Figure 3.5: Class activation map over a lung radiography [6].

Attention in the complete image =
∑
i

CAMi (3.2)

Attention inside the lungs =
∑
j

CAMj (3.3)

being i all the values of the CAM, and j all the values that are inside the lung area in
the CAM.

AIL =
Attention inside the lungs

Attention in the complete image
(3.4)



Chapter 4

Experiments and results

This chapter is divided into four different sections. First, in Section 4.1 we complete
the information that is in Section 3.2 about the changes that we did over the target
dataset, specifying the values used. Then, in Section 4.2 we explain the different
configurations that we did over the model’s different heads for them to be able to
apply the different SSL tasks to our data. In Section 4.3 we explain in detail how the
training was performed, as well as the hyperparameter search. Finally, in Section 4.4,
we summarize all the results and also we give quality results by displaying the model’s
attention maps.

4.1 Data Segmentation and Metadata Formating

For this work, we performed some transformations over the original SIIM-FISABIO-
RSNA dataset, as it did not suit all of our requirements. First of all, the images were
stored in sparse paths and labeled as an object detection problem, with the disease
along with the bounding boxes. As we are only interested in the classification task, we
iterated over the different metadata datasets (in csv format) to search for the informa-
tion that we required and created a dataframe that summarizes all we needed. This
dataframe has one column for the image name, and a second column for the disease,
simplifying the recompilation of the data. We also group all the images in a single
folder, as MMSelfSup requires.

As mentioned in Chapter 3, we used complete and segmented images. We decided
to perform the experiments in three case scenarios: with the complete image, with the
segmented image and black background, and with the segmented image and a gray
image (Figure 4.1). This gray color corresponds to the mean value from the full im-
ages. We performed this last case so the mean of the complete image is not affected
much because of the segmentation. Later on the results, we check if this step has any
advantage over a classic segmentation with a black background. We can see the value
of the mean and standard deviation of the different groups in Table 4.1. As we do not
have the mean nor the standard deviation from the SIIM-FISABIO-RSNA dataset, we
have to first do a preliminary data reading so we can calculate these two values.

25



26 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.1: Different type of images that are feed to the network. Complete image,
segmented with a gray background and segmented with a black background (from left
to right)

Mean Standard Deviation
Full image 0.5234 0.2415

Segmented Gray 0.5026 0.0859
Segmented Black 0.1028 0.2022

Table 4.1: Table with the means and standard deviation from all the datasets of images
feeded to the networks

4.2 Data Augmentation and Hyperparameter Con-

figuration

As explained in Section 3.1, we decided to use Resnet-50 over DenseNet-121 for this
work. Using the configuration files that MMSelfSup provides us we can change the
model’s head configuration. This is particularly important when the model is about to
perform a SSL task, as the data transformations performed over the data are core for
the learning. In addition to these transformations, needed for the SSL task to work, we
added some data augmentation to vary our data. We split these augmentations into
three different groups depending on the task the head is going to solve, which can be
seen in Table 4.2. We perform these augmentations because of the procedure explained
in [100].

Head Transformations SSL Tasks

Contrastive learning
Random crop MoCo-V2
Horizontal flip

SwAV
Random rotation

Non-Contrastive learning
Random crop Rotation Prediction
Horizontal flip Relative Location

Classification
Random crop

Classification
Horizontal flip

Table 4.2: Different augmentations for each SSL Task
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Finally, for the training process, some hyper-parameters had to be set. In this work,
we set the optimizer configuration and the batch size, while we explore different values
for the LR. In Table 4.3 we can see the values that we established for batch size and
the optimizer for every task. The decision for the batch size is mainly influenced by
the capacity of the GPU used for this work (RTX 2080). The information on this GPU
can be found in Appendix A. We used SGD (Stochastic Gradient Descend) [100] for
most of the tasks except with SwAV in which we used LARS (Layer-wise Adaptive
Rate Scaling) [101] which was used because it is recommended optimization technique
proposed in [46]. SwAV also uses a queue that is composed of feature representations
from the previous batches. We decided to use a queue size 8 times larger than the
batch size as it needs to be a multiple of batch size and to be less than total training
data. Regarding the learning rate, we explored different values for every combination.
This is explained in further detail in Section 4.3.

Task Batch Size Epochs Optimizer

Classification 64 170
Type SGD

Momentum 0,9
Weight decay 1e-4

Relative Location 32 30
Type SGD

Momentum 0,9
Weight decay 1e-4

Rotation Prediction 16 30
Type SGD

Momentum 0,9
Weight decay 1e-4

MoCo-V2 32 30
Type SGD

Momentum 0,9
Weight decay 1e-4

SwAV 8 30
Type LARS

Queue Size 64

Table 4.3: Different hyper-parameters that where fixed for all experiments.

4.3 Training and Learning Rate Search

In this last section, we explain the complete process to train our model, the different
SSL task combinations that we tested, the learning rate searching process, and the
results obtained.

4.3.1 Naive Implementation

In this first subsection, we pretrained our model in the most naive way to check if we
have any errors and do our first deductions based on the obtained results. As explained
in Section 3.1, the model we built is trained by combining multiple learning tasks. In
Tables 4.5, 4.6 and 4.7 are the results obtained for the first training we performed. In
this first training, we classified the four different classes with the model pretrained over
different tasks with no combinations. For this first case, we trained it with a fixed LR.
We trained and tested the model over the complete images and the segmented ones
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(with black and gray background).

After training these models, we appreciate two important factors. The main one is
that the model is not able to learn about the two classes with the least data, Inde-
terminate appearance and Atypical appearance. After searching in the current
state-of-the-art [102, 7], we found that other authors also had problems with these
classes, and thus making the model try to learn them can worsen the overall perfor-
mance. We also performed some experiments with a smaller batch size (we can see the
results from these in Table 4.4), and when the configuration is like this, the model is
not able to learn nothing from this classes, nor in validation, nor in training. As the
results for these data are bad both in training and in validation, w concluded that it
was not a problem of the model not being able to generalize, and more a problem of
the data. We decided to remove them for this work, as the main objective is to check
the model’s domain adaptation.

Classification over the Full images

Pretraining LR
Batch
Size

Neg
Acc

Typical
Acc

Indet
Acc

Atipical
Acc

Mean Acc

From Scratch 0,01 16 74,367 67,869 0,467 0,990 35,923
Imagenet 0,01 16 79,747 82,131 6,075 0,000 41,988

RelativeLoc 0,01 16 81,329 84,754 0,000 0,000 41,521
RotationPred 0,01 8 81,013 84,426 0,000 0,000 41,360

Swav 0,01 4 77,840 84,590 0,000 0,000 40,608
MocoV2 0,01 16 82,278 83,607 1,402 0,000 41,822

Table 4.4: Results of the experiments with half of the batch size.

The other main inconvenience that we discovered with these results is that the seg-
mentation with the gray background does not contribute to the learning of the model.
To reduce the training load we decided to only work with the most classical approach,
which is to have the segmentation with a black background.

Classification over the Full images

Pretraining LR
Neg
Acc

Typical
Acc

Indet
Acc

Atypical
Acc

Mean Acc

From Scratch 0,01 77,215 80,820 9,813 7,921 43,942
Imagenet 0,01 79,114 77,541 7,009 2,970 41,659

RelativeLoc 0,01 77,215 75,082 17,757 20,792 47,712
RotationPred 0,01 78,81 81,803 5,140 8,911 43,666

Swav 0,01 74,051 79,508 10,280 11,881 43,930
MocoV2 0,01 80,063 74,918 14,016 11,881 45,220

Table 4.5: Classification accuracy for the different classes over complete images.
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Classification over the Segmented images with black background

Pretraining LR
Neg
Acc

Typical
Acc

Indet
Acc

Atypical
Acc

Mean Acc

From Scratch 0,01 77,848 80,000 9,813 4,950 43,153
Imagenet 0,01 76,582 80,656 7,944 7,944 43,282

RelativeLoc 0,01 76,899 80 11,215 4,95 43,266
RotationPred 0,01 74,051 76,230 10,280 13,861 43,606

Swav 0,01 79,430 81,311 12,617 6,931 45,072
MocoV2 0,01 77,848 78,525 8,411 11,881 44,166

Table 4.6: Classification accuracy for the different classes over segmented images with
black background.

Classification over the Segmented images with gray background

Pretraining LR
Neg
Acc

Typical
Acc

Indet
Acc

Atypical
Acc

Mean Acc

From Scratch 0,01 70,57 80,656 10,748 1,980 40,989
Imagenet 0,01 74,051 82,951 4,206 0,990 40,550

RelativeLoc 0,01 77,532 82,131 4,673 3,96 42,074
RotationPred 0,01 76,899 77,049 12,150 12,871 44,742

Swav 0,01 77,215 78,852 8,879 8,911 43,464
MocoV2 0,01 76,899 77,049 11,682 8,911 43,635

Table 4.7: Classification accuracy for the different classes over segmented images with
gray background.

4.3.2 Pretraining Over One SSL Task

After removing the two last classes and the images with a gray background, we remade
our experiments. This time we perform an extensive search of the learning rate. We
need to do this search for the LR of the pretext task as well as for the classification.
In Tables 4.8 and 4.9 we can see the best LR for each training scheme along with the
accuracy obtained after training it for 150 epochs. We can see in Appendix B more
detailed, the results for the SSL task search in Tables B.1 and B.3, and the results for
the classification search in Tables B.2 and B.4. The pretext tasks were trained over 20
epochs with every learning rate. Then the better learning rate is chosen and we train
the model for another 10 epochs (30 epochs in total). If we have N SSL tasks we repeat
this process for each of the N starting with the weights learned from the previous one.
With this pretrained model then we change heads to perform classification and train
with every learning rate for 70 epochs. Again, we chose the better learning rate and
train the model for another 80 epochs (150 epochs in total). In Figure 4.2 we can see
a validation plot in which we can appreciate that with around 75 epochs of the total
epochs we can have an intuition of which is the best LR.
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Figure 4.2: Validation accuracy for the different SSL tasks.

We search for the learning rate in the range of [0,01 - 0,25] with steps of 0,058 (6
different learning rates). As we can see in these tables, in this dataset, training the
model from one that was pretrained over a SSL task with data in the same domain as
the one used for the final classification, tend to improve the performance compared to
training over from scratch or over Imagenet. When trained from scratch, the model
is not able to learn good enough visual representations, while training over Imagenet,
in which the domain differs a lot, does not give the model enough information to
outperform the SSL task pretraining.

Full Image - Classification
Pretraining Best LR Acc 150 epoch

Scrach 0,039 83,69
Imagenet 0,155 82,75
Moco 0,039 83,89
Swav 0,039 83,97

Rel-Loc 0,039 83,62
Rotation 0,068 84,72

Table 4.8: Summarized results for classification accuracy with complete images.
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Segmented Black - Classification
Pretraining Best LR Acc 150 epoch

Scrach 0,058 81,78
Imagenet 0,01 82,73
Moco 0,058 82,639
Swav 0,01 83,716

Rel-Loc 0,01 83,798
Rotation 0,106 83,428

Table 4.9: Summarized results for classification accuracy with segmented images.

4.3.3 Pretraining Over Two SSL Tasks

After training our model with one SSL task we start combining two of them. As ex-
plained in Section 3.1, we pretrained the model by training it in one SSL task, and
then changing heads to training it over another SSL task. In Tables 4.10 and 4.11 we
can see the best LR for each training scheme along with the accuracy obtained after
training it for 150 epochs. We can see in Appendix B more detailed, the results of this
LR search in Tables B.5 and B.7 for the SSL task and in Tables B.6 and B.8 along
with the result of training the model with the best LR for 150 epochs. As we can
see in these tables, the result of classification after pretraining the model with com-
bined SSL tasks can outperform the pretraining with only one task, and over Imagenet.

Over the results in Table B.6, we can also see that when the model is last pretrained
using MoCo-V2 the results obtained have the worst performance, while if we train first
over MoCo-V2 they are in line with the other pretraining, achieving the best value in
the MoCo-V2 −→ Relative location combination (85,59 %). We consider this for, in
Section 4.3.4, reducing the number of experiments by starting always the pretraining
using MoCo-V2 as the first SSL task. We need to reduce the number of combinations
because of the computational cost of trying all the possible combinations of SSL tasks
with all the LRs.

Full Image Combined II - Classification
Pretraining Best LR Acc 150 epoch
MoCo + Rotation 0,058 84,7728
MoCo + Rel-Loc 0,01 85,59
MoCo + SwAV 0,01 83,67
Rotation + MoCo 0,058 76,087
Rotation + Rel-Loc 0,01 84,338
Rotation + SwAV 0,01 84,81
Rel-Loc + Rotation 0,01 84,5476
Rel-Loc + MoCo 0,01 82,7957
Rel-Loc + SwAV 0,058 85,27
SwAV + Rotation 0,01 83,89
SwAV + Rel-Loc 0,01 84,92
SwAV + MoCo 0,01 82,374

Table 4.10: Summarized results for classification accuracy with complete images and
2 SSL tasks combined.
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Segmented Black Combined II - Classification
Pretraining Best LR Acc 150 epoch
MoCo + Rotation 0,01 84,5554
MoCo + Rel-Loc 0,01 84,296
MoCo + SwAV 0,106 81,3488
Rotation + MoCo 0,058 77,3361
Rotation + Rel-Loc 0,01 83,3238
Rotation + SwAV 0,01 84,4314
Rel-Loc + Rotation 0,01 83,7985
Rel-Loc + MoCo 0,01 81,148
Rel-Loc + SwAV 0,01 83,6823
SwAV + Rotation 0,01 81,2975
SwAV + Rel-Loc 0,01 82,7386
SwAV + MoCo 0,01 84,3495

Table 4.11: Summarized results for classification accuracy with segmented images and
2 SSL tasks combined.

4.3.4 Pretraining Over Three SSL Task

As explained in Section 4.3.3, to reduce the number of experiments, we decide to use
MoCo-V2 as the base SSL task to pretrain our model with three SSL tasks. The
experiments are produced in the same order as in the previous sections, and the results
can be seen in Tables 4.10 and 4.11. We can see in Appendix B the detailed results
in Tables B.9, B.11, B.10 and B.12. We can see in the results that some combinations
outperform the pretraining with two different SSL tasks.

Full Image Combined III - Classification
Pretraining Best LR Acc 150 epoch

MoCo + Rotation + Rel-Loc 0,058 85,28
MoCo + Rotation + SwAV 0,058 84,8
MoCo + Rel-Loc + Rotation 0,01 84,19
MoCo + Rel-Loc + SwAV 0,01 85,49
MoCo + SwAV + Rotation 0,01 85,67
MoCo + SwAV + Rel-Loc 0,01 83,74

Table 4.12: Summarized results for classification accuracy with complete images and
3 SSL tasks combined.
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Segmented Black Combined III - Classification
Pretraining Best LR Acc 150 epoch

MoCo + Rotation + Rel-Loc 0,01 84,38
MoCo + Rotation + SwAV 0,01 85,14
MoCo + Rel-Loc + Rotation 0,01 83,48
MoCo + Rel-Loc + SwAV 0,01 84,64
MoCo + SwAV + Rotation 0,01 84,67
MoCo + SwAV + Rel-Loc 0,01 84,71

Table 4.13: Summarized results for classification accuracy with segmented images and
3 SSL tasks combined.

4.4 Performance Overview and Qualitative Results

In this section, we summarize the results from the previous section along with the
visualization of the different models’ attention. This section serves as a way to have a
global vision of the system and how the results have been improving by adding tasks
to the pretraining.

In Table 4.14 we can see all the results obtained for one, two, and three SSL tasks
combined, for both full images, and segmented ones. We marked the better accuracies
for a single task, two tasks combined and three tasks combined pretraining. We can
also see in this table that most of the models have a better performance when trained
and tested over complete images, supporting that the model is biased towards the
information outside of the lung area.
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Full Image Segmented Full/Segmented
Scrach 83,690 81,780 Full
Imagenet 82,750 82,730 Full
MoCo 83,890 82,640 Full
Rot-Pred 83,970 83,428 Full
Rel-Loc 83,620 83,799 Segmented
SwAV 84,720 83,716 Full
MoCo + Rot-Pred 84,773 84,555 Full
MoCo + Rel-Loc 85,590 84,296 Full
MoCo + SwAV 83,670 81,349 Full
Rot-Pred + MoCo 76,087 77,336 Segmented
Rot-Pred + Rel-Loc 84,338 83,324 Full
Rot-Pred + SwAV 84,810 84,431 Full
Rel-Loc + Rot-Pred 84,548 83,799 Full
Rel-Loc + MoCo 82,796 81,148 Full
Rel-Loc + SwAV 85,270 83,682 Full
SwAV + Rot-Pred 83,890 81,298 Full
SwAV + Rel-Loc 84,920 82,739 Full
SwAV + MoCo 82,374 84,350 Segmented
MoCo + Rot-Pred + Rel-Loc 85,280 84,380 Full
MoCo + Rot-Pred + SwAV 84,800 85,140 Segmented
MoCo + Rel-Loc + Rot-Pred 84,190 83,480 Full
MoCo + Rel-Loc + SwAV 85,490 84,640 Full
MoCo + SwAV + Rel-Loc 85,670 84,670 Full
MoCo + SwAV + Rot-Pred 83,740 84,710 Segmented

Table 4.14: Accuracy obtained with every combination of SSL tasks. The left-most
column indicates the configuration, in which the training order is from left to right,
i.e, the last row indicates a model that has been pretrained first over MoCoV2, then
SwAV, and finally over Rotation prediction. The right-most column indicates if that
configuration performs better over complete or segmented images.

4.4.1 Model’s Attention

In this subsection, we display different images that correspond to the model’s class
attention maps. This CAMs can be found in Figure 4.4 for the complete and segmented
images. In Appendix C we can find the plots for every training scheme (Figures C.2,
C.3, C.2, C.4, C.5, C.6, C.7, C.8). In the title of each of these images, we indicated
the AIL metric (explained in Subsection 3.3.1) along with the predicted label and the
ground truth (in Figure C.1 in Appendix C, we can see one of these images in a bigger
shape to be able to read the text). Finally, in Table 4.15 and in Figure 4.3 we can see
the mean AIL for each model configuration. We can see that mostly when the model
has been trained over segmented images, the AIL value increases, meaning that the
model focuses more on the inside area of the lungs.
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Model Full Segmented
Scratch 37.3083 46.3289
Imagenet 38.158 43.4132
MoCo 37.4007 44.1397
Rot-Pred 42.8201 52.9003
Rel-Loc 36.3305 41.7388
SwAV 45.9535 47.871
MoCo + Rot-Pred 47.9275 42.6116
MoCo + Rel-Loc 39.5732 45.4199
MoCo + SwAV 41.7999 51.1816
Rot-Pred + MoCo 31.8748 48.3771
Rot-Pred + Rel-Loc 44.4802 43.1016
Rot-Pred + SwAV 41.4614 49.0282
Rel-Loc + Rot-Pred 48.6326 46.4846
Rel-Loc + MoCo 39.4196 48.0898
Rel-Loc + SwAV 46.2610 49.7293
SwAV + Rot-Pred 47.1613 45.6833
SwAV + Rel-Loc 43.0599 43.0684
SwAV + MoCo 36.5135 46.1692
MoCo + Rot-Pred + SwAV 30.6949 42.1145
MoCo + Rot-Pred + Rel-Loc 38.8207 39.6664
MoCo + Rel-Loc + Rot-Pred 38.5112 48.6078
MoCo + Rel-Loc + SwAV 46.3053 43.1919
MoCo + SwAV + Rel-Loc 40.8918 53.8027
MoCo + SwAV + Rot-Pred 40.1955 44.2062
Mean 40.8982 46.1219

Table 4.15: AIL of each model and comparing training with complete or segmented
images.
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Figure 4.3: Plot representing the AIL of each model and comparing training with
complete or segmented images.
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Figure 4.4: Class attention maps for the single task pretraining over complete images.
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Chapter 5

Conclusions and Future Work

In this chapter, we finish this work by, in Section 5.1, summarizing all the work that
has been done for this thesis to work. In Section 5.2, we expose the conclusions that
can be obtained from the results of Chapter 4. In Section 5.1, we summarize all the
work that has been done for this thesis to work. Finally, in Section 5.3 we propose
some future work that can be done using this work as a base or changing some of the
design decisions that were explained in Chapter 3.

5.1 Work Done

To the aim of this project, we implemented a SSL pretraining scheme that combines
multiple pretext tasks in a sequential order to create a more complex and accurate
visual representation of the data. To prove that combining SSL tasks gives the model
more information, we did all the experiments with combinations of up to three SSL
tasks. We tested this pretrained model over X-Ray lung images from the SIIM-
FISABIO-RSNA dataset that we collected and preprocessed. To check the amount
of information that this dataset has towards the region outside the lungs, we per-
formed a semantic segmentation and trained our model with complete and segmented
images. Finally, we visualized the attention maps of the different models and created
a custom metric (AIL), so we could assure that the models’ attention focuses more on
the lungs region when trained with the segmented images.

5.2 Conclusions

In this thesis, we studied the problems that come along with using deep learning solu-
tions with medical images. Databases from the medical field tend to be short in labeled
data for training a DL model. However, to avoid this problem we implemented a model
that is trained using a combination of SSL tasks to surpass this lack of labels.

The main conclusion that we obtained by doing this work, is that combining SSL
tasks in the training scheme can improve a pretraining over Imagenet or from a single
SSL task. Pretraining in Imagenet we obtained an 83.69% mean accuracy when trained
over complete images, while, in our best configuration training with this same type of
images, that is MoCo-V2 → SwAV → Relative Location we obtained an 85.67%, thus
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achieving a +1.98 accuracy. With the segmented images we achieve a similar per-
formance increase, having an 83.799% when pretrained over Imagenet, and an 85.14%
when using our best configuration for this case which is MoCo-V2 → Rotation Predic-
tion → SwAV, achieving a +1.341 accuracy.

We could also see that when trained over segmented images, the accuracy perfor-
mance is worst than with complete images because the amount of information is less.
However, the difference is not big (-0.53% accuracy difference) and on the other hand,
we could see that it focuses more on the lung region. Knowing this, using the seg-
mented model could be beneficial for inference over images that we do not the origin
of, and may be biased. Another conclusion that we can extract from the attention
results is that the models that focus more attention on the lung region and that have
been trained with complete images may be the more resilient to the changes in the
inference images, as they are not as affected by the bias as the others.

Finally, during the first experiments, we saw that the learning process over this
dataset is highly influenced by the batch size. When the batch size was too small the
model was unable to learn anything from the images labeled as atypical or indetermi-
nate appearance.

5.3 Future Work

In this section, we detail some ideas that we were not able to perform in this thesis,
but that may be interesting for future works that take this as a base or that want to
modify it.

Firstly, using a bigger database to do the pretraining, either the one that then will
be used for classification, as we did, or one in the same domain so the model can gen-
eralize, as in Ridzuan et al. [7] work. Also, using different or more combinations of
SSL tasks. In this work, we have explored some of the options but there is still a large
number of SSL tasks to test [103, 104, 105]. Then, perform more and more complex
data augmentation over the dataset, to be able to expand the capacity of the model.
Another idea would be to use a more complex backbone, like Densenet as explained
in Section 3.1. Then, as a method to check how much the information from outside
of the lungs region contributes to the final prediction, we propose to implement an
inverted segmentation, in which the lungs are removed from the image and then do the
classification.

Regarding the attention of the model, we propose to implement the CKA (Cen-
tered Kernel Alignment) [106] metric in future works. This measures the similarity
of representations for different network layers. With this, we could measure the simi-
larity of different pretrainings, and if the performance is related to the representation.
This could be useful to propose a better sorting of the SSL tasks in the training scheme.

Finally, as the database that we used is aimed to perform detection, we could
check if the model’s attention is focused on the regions where the diseases are labeled.
Another work would be to implement a metric similar to the AIL that we created, but
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taking into consideration these areas from the detection dataset. Finally, we would
also propose to use this training scheme for different final tasks, like object detection,
and check its performance.
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Appendix A

Appendix Environment

In this appendix we show the environment configurations in which we performed our
experiments.

GPU Configuration

+-----------------------------------------------------------------------------+\

NVIDIA-SMI 418.39 Driver Version: 418.39 CUDA Version: 10.1

------------------------------+----------------------+----------------------+\

GPU Name Persistence-M Bus-Id Disp.A Volatile Uncorr. ECC

Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M.

=̄=============================+======================+======================

0 GeForce RTX 208... Off 00000000:01:00.0 Off N/A

55% 59C P0 67W / 260W 0MiB / 10989MiB 0% Default

+-------------------------------+----------------------+----------------------+

Environment Configuration

# packages in environment at /media/DiscoLocal/MUDLAVSP/Ivan/Kirill/env:

#

# Name Version Build Channel

_libgcc_mutex 0.1 main

_openmp_mutex 4.5 1_gnu

_pytorch_select 0.1 cpu_0

absl-py 1.0.0 pypi_0 pypi

addict 2.4.0 pypi_0 pypi

backcall 0.2.0 pypi_0 pypi

blas 1.0 mkl

ca-certificates 2022.2.1 h06a4308_0

cachetools 5.0.0 pypi_0 pypi

certifi 2021.10.8 py37h06a4308_2

charset-normalizer 2.0.12 pypi_0 pypi

cudatoolkit 10.1.243 h6bb024c_0

cycler 0.11.0 pypi_0 pypi

debugpy 1.6.0 pypi_0 pypi

decorator 5.1.1 pypi_0 pypi

entrypoints 0.4 pypi_0 pypi

faiss-gpu 1.6.1 pypi_0 pypi

fonttools 4.29.1 pypi_0 pypi

freetype 2.11.0 h70c0345_0

future 0.18.2 pypi_0 pypi
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giflib 5.2.1 h7b6447c_0

google-auth 2.6.0 pypi_0 pypi

google-auth-oauthlib 0.4.6 pypi_0 pypi

grad-cam 1.3.7 pypi_0 pypi

grpcio 1.44.0 pypi_0 pypi

idna 3.3 pypi_0 pypi

importlib-metadata 4.11.2 pypi_0 pypi

intel-openmp 2021.4.0 h06a4308_3561

ipykernel 6.13.0 pypi_0 pypi

ipython 7.32.0 pypi_0 pypi

jedi 0.18.1 pypi_0 pypi

joblib 1.1.0 pypi_0 pypi

jpeg 9d h7f8727e_0

jupyter-client 7.2.2 pypi_0 pypi

jupyter-core 4.9.2 pypi_0 pypi

kiwisolver 1.3.2 pypi_0 pypi

lcms2 2.12 h3be6417_0

ld_impl_linux-64 2.35.1 h7274673_9

libffi 3.3 he6710b0_2

libgcc-ng 9.3.0 h5101ec6_17

libgomp 9.3.0 h5101ec6_17

libpng 1.6.37 hbc83047_0

libstdcxx-ng 9.3.0 hd4cf53a_17

libtiff 4.2.0 h85742a9_0

libuv 1.40.0 h7b6447c_0

libwebp 1.2.2 h55f646e_0

libwebp-base 1.2.2 h7f8727e_0

lz4-c 1.9.3 h295c915_1

markdown 3.3.6 pypi_0 pypi

matplotlib 3.5.1 pypi_0 pypi

matplotlib-inline 0.1.3 pypi_0 pypi

mkl 2021.4.0 h06a4308_640

mkl-service 2.4.0 py37h7f8727e_0

mkl_fft 1.3.1 py37hd3c417c_0

mkl_random 1.2.2 py37h51133e4_0

mmcls 0.21.0 pypi_0 pypi

mmcv-full 1.4.6 pypi_0 pypi

mmdet 2.22.0 pypi_0 pypi

mmselfsup 0.5.0 dev_0 <develop>

ncurses 6.3 h7f8727e_2

nest-asyncio 1.5.5 pypi_0 pypi

ninja 1.10.2 py37hd09550d_3

numpy 1.21.2 py37h20f2e39_0

numpy-base 1.21.2 py37h79a1101_0

oauthlib 3.2.0 pypi_0 pypi

opencv-python 4.5.5.62 pypi_0 pypi

openssl 1.1.1m h7f8727e_0

packaging 21.3 pypi_0 pypi

pandas 1.3.5 pypi_0 pypi

parso 0.8.3 pypi_0 pypi

pexpect 4.8.0 pypi_0 pypi

pickleshare 0.7.5 pypi_0 pypi

pillow 9.0.1 py37h22f2fdc_0

pip 21.2.2 py37h06a4308_0

prompt-toolkit 3.0.29 pypi_0 pypi

protobuf 3.19.4 pypi_0 pypi

psutil 5.9.0 pypi_0 pypi

ptyprocess 0.7.0 pypi_0 pypi
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pyasn1 0.4.8 pypi_0 pypi

pyasn1-modules 0.2.8 pypi_0 pypi

pycocotools 2.0.4 pypi_0 pypi

pygments 2.11.2 pypi_0 pypi

pyparsing 3.0.7 pypi_0 pypi

python 3.7.11 h12debd9_0

python-dateutil 2.8.2 pypi_0 pypi

pytz 2022.1 pypi_0 pypi

pyyaml 6.0 pypi_0 pypi

pyzmq 22.3.0 pypi_0 pypi

readline 8.1.2 h7f8727e_1

requests 2.27.1 pypi_0 pypi

requests-oauthlib 1.3.1 pypi_0 pypi

rsa 4.8 pypi_0 pypi

scikit-learn 1.0.2 pypi_0 pypi

scipy 1.7.3 pypi_0 pypi

seaborn 0.11.2 pypi_0 pypi

setuptools 58.0.4 py37h06a4308_0

six 1.16.0 pyhd3eb1b0_1

sklearn 0.0 pypi_0 pypi

sqlite 3.37.2 hc218d9a_0

tensorboard 2.8.0 pypi_0 pypi

tensorboard-data-server 0.6.1 pypi_0 pypi

tensorboard-plugin-wit 1.8.1 pypi_0 pypi

terminaltables 3.1.10 pypi_0 pypi

threadpoolctl 3.1.0 pypi_0 pypi

tk 8.6.11 h1ccaba5_0

torch 1.7.1+cu101 pypi_0 pypi

torchaudio 0.7.2 pypi_0 pypi

torchvision 0.8.2+cu101 pypi_0 pypi

tornado 6.1 pypi_0 pypi

tqdm 4.63.0 pypi_0 pypi

traitlets 5.1.1 pypi_0 pypi

ttach 0.0.3 pypi_0 pypi

typing_extensions 3.10.0.2 pyh06a4308_0

urllib3 1.26.8 pypi_0 pypi

wcwidth 0.2.5 pypi_0 pypi

werkzeug 2.0.3 pypi_0 pypi

wheel 0.37.1 pyhd3eb1b0_0

xz 5.2.5 h7b6447c_0

yapf 0.32.0 pypi_0 pypi

zipp 3.7.0 pypi_0 pypi

zlib 1.2.11 h7f8727e_4

zstd 1.4.9 haebb681_0
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Appendix B

Appendix Results

In this appendix we show the tables from the results in more detail, indicationg all the
LR that we tested and the different accuracies obtained.

Full Image - SSL Task
LR Moco Swav Rel-Loc Rotation
0,01 8,259 7,889 95,56 99,09
0,039 8,122 7,774 93,8 99,06
0,068 8,38 7,699 94,29 98,72
0,097 8,217 7,592 94,82 98,5
0,126 8,281 7,559 95,38 99,06
0,155 8,306 7,483 94,15 97,97
0,184 8,398 7,467 91,39 98,81
0,213 8,341 7,468 93,92 96,78
0,242 8,423 7,599 92,63 97,5
0,271 8,362 7,583 93,88 97,72
0,3 8,662 7,61 93,82 97,78

Table B.1: SSL task performance with different learning rates over complete images.
Relative Location and Rotation prediction are measured in accuracy, while MoCo and
SwAV are over their loss.
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Full Image - Classification
LR Scrach Imagenet Moco Swav Rel-Loc Rotation
0,01 81,55 78,8 83,03 82,78 82,23 78,37
0,039 83,69 81,28 83,71 83,29 83,66 81,04
0,068 81,83 80,49 80,49 81,49 82,72 81,59
0,097 78,5 77,26 80,51 81,64 79,12 78,1
0,126 82,36 75,07 82,18 80,95 79,9 81,02
0,155 81,93 82,18 82,1 81,65 77,45 79,02
0,184 69,35 79,74 74,75 75,3 78,9 79,39
0,213 76,75 74,83 50 69,07 74,7 77,82
0,242 51,11 72,75 61,36 80,79 72,96 62,54
0,271 79,78 79,14 79,97 80,83 72,71 78,29
0,3 77,94 78,9 72,28 74,39 78,64 70,72

150 epochs 83,69 82,75 83,89 83,97 83,62 84,72

Table B.2: Classification accuracy with different learning rates and different pre-
trainings over complete images.

Segmented Black - SSL Task
LR Moco Swav Rel-Loc Rotation
0,01 8,077 7,931 86,88 98,34
0,058 8,067 7,744 84,29 98,25
0,106 8,083 7,66 84,13 98,44
0,154 8,164 7,664 85,19 98,06
0,202 8,458 7,65 85,54 98,22
0,25 8,422 7,595 84,59 97,94

Table B.3: SSL task performance with different learning rates over segmented images.
Relative Location and Rotation prediction are measured in accuracy, while MoCo and
SwAV are over their loss.

Segmented black - Classification
LR Scrach Imagenet Moco Swav Rel-Loc Rotation
0,01 73,03 82,73 78,02 83,63 83,08 77,91
0,058 81,78 77,09 82,61 82,87 72,43 74,18
0,106 73,42 74,81 79,95 79,77 78,43 82,36
0,154 62,53 67,24 70,49 75,7 70,12 78,79
0,202 76,79 73,78 63,95 65,79 72,54 78,22
0,25 72,39 51,5 71,83 77,17 52,19 73,12

150 epochs 81,78 82,73 82,6396 83,716 83,7985 83,428

Table B.4: Classification accuracy with different learning rates and different pre-
trainings over segmented images.
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Full image Combined I - SSL Task

LR
Mocov2 Rotation Rel-Loc Swav

Rotation Rel-Loc Swav MocoV2 Rel-Loc Swav Rotation MocoV2 Swav Rotation Rel-Loc MocoV2
0,01 98,19 93,61 7,934 8,623 93,74 7,935 98,31 7,785 7,935 98,09 93,67 8,349
0,039 97,63 94,39 9,823 8,327 93,25 7,824 97,72 8,33 7,823 98,06 95,09 8,432
0,068 98,44 91,95 7,769 8,374 86,2 7,771 98,66 8,328 7,77 98,41 90,52 8,534
0,097 98,84 92,62 7,733 8,418 89,77 7,731 98,56 8,341 7,73 99,22 92,59 8,57
0,126 97,06 91,4 7,694 8,46 89,38 7,698 98,06 8,382 7,701 98,31 91,05 8,561
0,155 98,78 93,77 7,632 8,438 86,12 7,636 98,81 8,419 7,629 98,16 89,78 8,629
0,184 98,5 91,4 7,65 8,447 91,76 7,641 98,03 8,443 7,657 98,38 91,29 8,677
0,213 98,56 93,02 7,671 8,461 91,38 7,694 98,59 8,489 7,653 98,47 90,09 8,626
0,242 98,09 91,63 7,687 8,518 92,35 7,687 98,03 8,496 7,689 98,09 91,18 8,644
0,271 97,44 91,39 7,689 8,514 89,55 7,681 97,22 8,554 7,683 97,63 91,91 8,67
0,3 97,28 89,52 7,71 8,542 89,74 7,718 97,28 8,564 7,704 97,25 87,73 8,701

Table B.5: SSL task performance with different learning rates over complete images.
The order for the SSL task is from top to bottom. The second column refers to a model
first pretrained with MoCoV2 and then with Rotation prediction. Relative Location
and Rotation prediction are measured in accuracy, while MoCo and SwAV are over
their loss.

Full Image Combined I - Classification

LR
Mocov2 Rotation Rel-Loc Swav

Rotation Rel-Loc Swav MocoV2 Rel-Loc Swav Rotation MocoV2 Swav Rotation Rel-Loc MocoV2
0,01 82,24 82,61 83,61 76,74 84,31 83,1 82,63 83,98 82,14 81,52 84,69 82,07
0,058 83,06 82,17 80,6 80,3 77,38 80,78 81,88 61,81 82,68 80,93 78,85 59,8
0,106 79,93 72,8 76,16 79,49 68,59 75,93 81,35 62,31 76,02 79,57 79,91 71,14
0,154 77,75 80,28 81,18 78,61 75,61 80,13 82,17 81,69 75,98 75,34 78,2 77,54
0,202 79,02 80,52 72,65 70,12 71,73 73,73 80,83 58,43 81,02 81,17 71,42 80,71
0,25 79,88 73,89 68,89 78,5 64,19 78,12 79,46 62,78 69,97 69,54 50 57

150 epoch 84,7728 85,59 83,67 76,087 84,338 84,81 84,5476 82,7957 85,27 83,89 84,92 82,374

Table B.6: Classification accuracy with different learning rates and different combined
pre-trainings over complete images. The order for the SSL task is from top to bottom.
The second column refers to a model first pretrained with MoCoV2 and then with
Rotation prediction.

Segmented Black Combined II - SSL

LR
Mocov2 Rotation Rel-Loc Swav

Rotation Rel-Loc Swav MocoV2 Rel-Loc Swav Rotation MocoV2 Swav Rotation Rel-Loc MocoV2
0,01 98,97 87,02 7,82 8,15 86,07 7,935 99,13 7,945 7,767 99,06 86,55 8,337
0,058 99,44 80,27 7,575 8,359 86,36 7,701 99,56 8,495 7,528 98,94 87,02 8,468
0,106 98,5 83,78 7,507 8,415 85,53 7,594 97,66 8,524 7,514 98,31 84,21 8,662
0,154 97,63 84,34 7,536 8,427 85,34 7,583 97,16 8,567 7,465 97,91 83,09 8,768
0,202 98,38 84,64 7,58 8,449 84,41 7,583 97,34 8,632 7,463 98,56 84,34 8,678
0,25 97,13 85,22 7,607 8,513 84,67 7,558 97,56 8,692 7,661 97,31 82,33 8,866

Table B.7: SSL task performance with different learning rates over segmented images.
The order for the SSL task is from top to bottom. The second column refers to a model
first pretrained with MoCoV2 and then with Rotation prediction. Relative Location
and Rotation prediction are measured in accuracy, while MoCo and SwAV are over
their loss.
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Segmented Black Combined II - Classification

LR
Mocov2 Rotation Rel-Loc Swav

Rotation Rel-Loc Swav MocoV2 Rel-Loc Swav Rotation MocoV2 Swav Rotation Rel-Loc MocoV2
0,01 83,57 82,82 59,46 80,21 83,07 83,59 83,94 83,77 83,03 83,09 83 82,34
0,058 80,26 78,98 75,77 83,1 80,19 80,08 74,91 75,37 81,49 74,18 80,01 73,18
0,106 53,15 76,09 82,45 62,83 79,06 69,15 68,87 66,96 51,49 72,75 76,75 71,33
0,154 80,87 64,43 72,63 80,18 71,01 73,18 80,58 72,59 72,08 59,4 76,8 56,37
0,202 50 75,28 72,68 74,23 52,79 72,21 70,68 70,43 73,29 72,63 61,85 71,89
0,25 76,76 58,53 52,99 70,41 65,26 73,09 67,41 60,01 69,02 77,73 60,49 61,5

150 epoch 84,5554 84,296 81,3488 77,3361 83,3238 84,4314 83,7985 81,148 83,6823 81,2975 82,7386 84,3495

Table B.8: Classification accuracy with different learning rates and different combined
pre-trainings over segmented images. The order for the SSL task is from top to bottom.
The second column refers to a model first pretrained with MoCoV2 and then with
Rotation prediction.

Full image Combined III - SSL Task
Mocov2

LR
Rotation Rel-Loc Swav

Rel-Loc Swav Rotation Swav Rel-Loc Rotation
0,01 94,52 7,994 99,59 7,889 94,9 98,78
0,058 81,87 7,737 98,41 7,669 81,21 99,53
0,106 90,54 7,682 97,38 7,767 81,99 98,84
0,154 88,59 7,793 99,34 7,851 86,55 98,19
0,202 90,27 7,837 98,41 7,818 88,27 98,97
0,25 88,04 7,803 98,16 7,88 88,37 97,5

Table B.9: SSL task performance with different learning rates over complete images.
The order for the SSL task is from top to bottom. The second column refers to a model
first pretrained with MoCoV2, then with rotation prediction, and finally with relative
location. Relative Location and Rotation prediction are measured in accuracy, while
MoCo and SwAV are over their loss.
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Full image Combined III - Classification
Mocov2

LR
Rotation Rel-Loc Swav

Rel-Loc Swav Rotation Swav Rel-Loc Rotation
0,01 81,83 81,84 81,46 85,22 84,08 84,67
0,058 84,07 83,88 81,36 83,08 81,58 82,84
0,106 81,45 81,4 78,34 82,46 80,46 81,92
0,154 82,91 69,02 76,52 73,32 80,2 81,88
0,202 73,46 81,03 77,52 80,04 69,77 84,28
0,25 79,59 79,25 75,44 76,08 64,13 79,63

150 epoch 85,28 84,8 84,19 85,49 85,67 83,74

Table B.10: Classification performance with different learning rates over complete im-
ages. The order for the SSL task is from top to bottom. The second column refers to a
model first pretrained with MoCoV2, then with Rotation prediction, and finally with
relative location. Relative Location and Rotation prediction are measured in accuracy,
while MoCo and SwAV are over their loss.

Segmented Black Combined III - SSL Task
Mocov2

LR
Rotation Rel-Loc Swav

Rel-Loc Swav Rotation Swav Rel-Loc Rotation
0,01 87,32 7,827 98,91 7,722 86,37 98,94
0,058 87,83 7,557 99,5 7,508 86,32 99,28
0,106 87,56 7,521 98,63 7,449 83,65 97,91
0,154 84,98 7,491 96,06 7,456 83,14 97,19
0,202 84,42 7,542 95,97 7,434 83,58 98,5
0,25 84,22 7,509 97,78 7,467 84,13 97,47

Table B.11: SSL task performance with different learning rates over segmented images.
The order for the SSL task is from top to bottom. The second column refers to a model
first pretrained with MoCoV2, then with Rotation prediction, and finally with relative
location. Relative Location and Rotation prediction are measured in accuracy, while
MoCo and SwAV are over their loss.
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Segmented Black Combined III - Classification
Mocov2

LR
Rotation Rel-Loc Swav

Rel-Loc Swav Rotation Swav Rel-Loc Rotation
0,01 83,05 83,64 84 84,02 83,35 83,55
0,058 77,45 72,43 73,12 81,42 80,97 71,21
0,106 80,64 80,4 72,26 75,84 71,2 80,4
0,154 76,22 79,96 72,29 66,66 78,01 56,99
0,202 75,53 73,35 73,41 79,36 77,28 67,03
0,25 60,36 72,5 62,64 64,73 52,42 61,3

150 epoch 84,38 85,14 83,48 84,64 84,67 84,71

Table B.12: Classification performance with different learning rates over segmented
images. The order for the SSL task is from top to bottom. The second column refers
to a model first pretrained with MoCoV2, then with Rotation prediction, and finally
with relative location. Relative Location and Rotation prediction are measured in
accuracy, while MoCo and SwAV are over their loss.
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Appendix Attention

In this appendix we show the class attention maps for all the models.

Figure C.1: Bigger image of the attention maps
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MoCo + Relative-Loc

MoCo + Rotation-Pred

MoCo + SwAV

Figure C.2: Class attention maps for combined pretraining over complete images (Start-
ing with MoCo-V2).

Relative-Loc + MoCo

Relative-Loc + Rotation-Pred

Relative-Loc + SwAV

Figure C.3: Class attention maps for combined pretraining over complete images (Start-
ing with Relative-Location).
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Rotation-Pred + MoCo

Rotation-Pred + Relative-Loc

Rotation-Pred + SwAV

Figure C.4: Class attention maps for combined pretraining over complete images (Start-
ing with Rotation-Prediction).

SwAV + MoCo

SwAV + Relative-Loc

SwAV + Rotation-Pred

Figure C.5: Class attention maps for combined pretraining over complete images (Start-
ing with SwAV).
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MoCo + SwAV + Rot-Pred

MoCo + SwAV + Relative-Loc

Figure C.6: Class attention maps for combined pretraining over complete images (Start-
ing with MoCo + SwAV).

MoCo + Rot-Pred + SwAV

MoCo + Rot-Pred + Relative-Loc

Figure C.7: Class attention maps for combined pretraining over complete images (Start-
ing with MoCo + Rotation-Prediction).

MoCo + Relative-Loc + SwAV

MoCo + Relative-Loc + Rot-Pred

Figure C.8: Class attention maps for combined pretraining over complete images (Start-
ing with MoCo + Relative-Location).
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