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Abstract

The work presented in this Master Thesis deals tabimieo sequences region based
object segmentation. Work starts from an effici8tate of Art pixel level segmentation.

In parallel, a new Mean-shift approach builds aicegsegmentation image of each
frame by clustering pixels in a region focusingti® intrinsic characteristics of real

objects. Obtaining a region based segmentation evifiemination influence has been

severely diminished. Region segmentation and pexal segmentation are combined to
discriminate between foreground and backgroundregin a scene.

Specifically, these regions are used to build godiate a multilayer background and a
foreground model. Regions in the models are chanzed by a time varying

covariance matrix which encloses a set of relevimattures. Covariance matrix
evolution along the video allows the system to riisinate between foreground and
background regions. A new static region trackingorapch is used to update
background model while a dynamic region trackingesformed to update foreground
model and identify regions frame to frame. Aftegiom discrimination a simple

feedback scheme exports segmentation results tel pevel module. Finally, an

approach to export foreground region tracking tensxted-component tracking is
presented.

Results show that segmentation approach practieathyds illumination artefacts from
segmentation without any post-processing technigaelitionally, system fills objects
holes and is exportable to multimodal backgroumdsrenments.
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Chapter X Introduction

| Chapter 1 — Introduction

1 Motivation

Nowadays, one of the main objectives of video ustd@ding techniques is to overcome
the ‘semantic gap’. The concept of ‘semantic gdy@racterizes the difference between
two descriptions formulated by different linguistepresentations. In video analysis the
‘semantic gap’ is defined as the empty space betwlee human perception of content
and the representation of the content that is dezdun the digital video signal [l 1]. In
other words, it is the difference between the fdation of contextual knowledge in a
powerful language (the human natural language) iédormulation in a formal
language (in video signals, either the codificatsteindard or the colour representation
system in raw video).

The concept of ‘semantic gap’ can be extended ¢o‘skmantic pyramid’ concept,
which can be understood as a division of the gapeweral levels of understanding
roughness. In video signal, the lowest level inglgeamid would be the pixel level. In
the next level, pixels can be grouped to form gggan level. Upper, a group of regions
can be categorized as an object in the followinglleFinally, the scene or group of
interrelated objects is at the top of the pyramid.

When interacting with video content, people wouldelto access information
(searching, indexing, viewing or tagging it) witigh level scene descriptions. That is,
with requests at the highest level of the pyramstaéad of requests at the lowest. For
instance, a user should query for a dog running prark and not for a group of brown
pixels over a bigger group of green ones.

Society demands research and advances in videgsan&chnology. Several areas of
interest and applications have been derived frahnelogy development and still need
new research and results to increase its capabiliQuoting some of the main ones;
video-security, computer vision, multimedia conteimdexing or video coding.
Weighting current necessities, the potential ohatomatic semantic description server
based in analysis of the digital video signal isremous.

The digital video signal analysis techniques, whchin objective is to generate high
level semantic descriptions should ascend in tmami starting from the lowest level,
that is, the pixel flow. Additionally, segmentatiand tracking of objects is essential to
describe what is in the scene and what is happethag) is, to describe the scene in a
natural language.

Taking these premises under consideration, weJeeligat region level is not only the
natural way to ascend from pixel analysis to olgjes¢gmentation, but also a key
intermediate step to control pixels aggregationapesters, to consider illumination

issues, as well as to characterize objects as dfagions. Motivation of this project

relays in the study of strong points, opportunitesl benefits of region segmentation
and tracking in opposition with systems that stniajgmp from pixel to object level.
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2  Objectives

The main objective of this Master Thesis is to dbote to reduce the ‘semantic gap’ in
as generic as possible environments (subordindtiagn to fixed camera situations).
With this objective, we use region level analysishiniques both to feed forward object
level analysis and to feed backward pixel levelysia.

Additionally, this work has specially focused iraslows and sparkles influence in final
results. lllumination influence is not isolated lmatvers variable size areas (from small
regions under objects to the whole frame). Accaydio this, it seems adequate to
consider illumination effects at region level ireleof, as several works stand (see
section 112), at pixel level. Consequently, the eash, development and use of
illumination-insensitive techniques are the otha@imobjectives of this Master Thesis.

Objectives of current Master Thesis can be listed:

- Design and implementation of automatic and inneeatregion segmentation
techniques based on region intrinsic charactesistic

- Categorization and tracking of segmented regions.

- Design and implementation of a feedback scheme fregion to pixel level
analysis. System works using two different pathHassical sequential flow and
feedback flow from high to low level analysis stage

Summarizing, main research has been made in:

- Selection of features to categorize unequivocallsheregion.
- Selection of robust approaches to avoid empiricslying of thresholds.

In conclusion, our aim is to allow the whole systemvork as a black box, where video
frames enter and semantic descriptions at regiogl Ere given at the output and feed
next level. Every part of the work has taken unmtersideration potential use of regions
and descriptors to feed next layer in the semaiamid. Furthermore, we have kept
an eye at improvements obtained by feedback stested)the low level analysis stage.
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Il Chapter 2 — State of Art

Region segmentation is a sub product of the prap@ggproach and a pixel level
segmentation is the starting point of it. Consetjyea description of existing
approaches both in pixel level and region levelhsagtation is necessary to compare
technology and show differences between currete sfeart and designed system.

Region tracking and characterization is the maijealve as we have explained and
motivated in 12. To show advantages of our sysexisting approaches should also be
included and commented.

Additionally, shadows influence has been diminisledhe proposed work; so, the
implemented technique needs to be compared witktiegiones to be assessed in an
overall view.

Finally, one of the significant points of the apgeb is the dual path: forward and
backward. Therefore, developed feedback strategeebriefly described to motivate its
advantage over layer-independent forward paths.

1 Segmentation approaches

[I.1.a Low Level Segmentation

Low level Segmentation approaches are those tlealouslevel information to perform
segmentation. Low level information can be motie@cters, DC or AC coefficients and
codification modes in compressed domds®G 1], [SEG 2], or spatial configuration of
each frame and temporal configuration of whole eid&tracted from pixel information
(when we straight try to segment raw video).

[I.1.a.1 Compressed-domain segmentation techniques

For completeness, we include in current state b$@me of the existing segmentation
approaches that work without decompressing theoviteeam, but developed work is
far from these techniques. However, some of theareskwith the presented work a
similar semantic-ascending scheme and that tuera televant to our work.

The main advantage of compressed-domain segmentatithe fact that by working
directly with compressed data, video does not némdbe decompressed and
consequently, the amount of data to process isdmtwl and 64 times smaller in
comparison with decompressed data. Therefore, sisaghould be faster and results
can be directly used by a video-codec (thus acogrdwith recently and poorly
developed enhancements included in MPEGES 3].

Most of the existing techniques still work over MPH/2 compressed domain available
information to perform segmentation. According trgllelism with our work we can
mention approach gBEG 4] that uses motion vectors information in conjunctwith
colour information extracted form DC coefficients segment moving objects in |
frames (intra-predicted frames).



We can observe semantic pyramid ascension in thé& ywmposed bySEG 5] that
preliminary over-segments each | frame by applyuagershed transform (explained in
section I.1.b)[SEG 6] and then uses motion information to combine presip
segmented regions in moving objects. On the otm@nd, in [SEG 7] region
segmentation is performed via motion informationstéring along a group of frames,
while objects boundary refinement is based in colatormation extracted from DC
coefficients.

Finally, the work developed H®EG 8] proposed a modular technique in which motion
and temporal tracking of motion vectors is the msonrce of information to achieve
segmentation.[SEG 9] includes extensions and enhancements over thak.wor
Specifically, their work uses colour informatiordds a module that deals with intra-
codified parts of a frame that includes motion nfation, a technique to avoid
suddenly disappearance of previously segmentedctsbjand a starting approach to
extend results to multi-modal backgrounds.

II.1.a.2 Raw pixel based segmentation techniques

According to bibliography,background subtractionis the core of pixel based
segmentation techniques. lIts relevance is evenehighwe restrict segmentation to
fixed cameras environments (as we have restriatedur work and is the common
situation in scenarios as video-surveillance).

Background subtractiompproaches are based on building and maintainimgdel of
the background and classify each pixel as eithekdraund or foreground depending
on a measure of the dissimilarity with the storedkground model. The nature of the
model and the way to measure dissimilarity estadie differences between existing
approaches.

As techniques in segmentation at region level aogensimilar among them (as we
explain in section Il.1.bdhan at pixel level, most of the ideas that inspue work are
extracted from pixel level classical techniques exiilapolated to region level.

We can roughly divide existing methods following twell-known survey proposed by
Piccardi[SEG 10] and make a simple to complex classification. Emartiey;

Running Gaussian averagemethods are those in where background is modelled
independently at each pixel. Evolution of each pixetime is fitted to a Gaussian
distribution in which influence in the model of pasd current samples of the pixels is
weighted differently; in example for the mean af thaussian, see equation (1):

’7Z,y,f: alx,y,f+(1_ a)nz,y,f—l (1)

Where|, and m . are the value of the pixal yand of the mean of pixe{, y at

framef respectively, andz is the weighting factor (its value should be betw® and
1). Running Gaussian average was first proposgggiy 11] and is used at the starting
point of our approach.
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Temporal median filter methods are those in which pixel value is compjustfor a few
frames that can be consecutiy88G 12] or sampled along the vidg¢eEG 13]. Obtaining
more stable background model, by avoiding contisiyoinfluence of a pseudo-static
object that appears somewhere in the middle oflaovi

Mixture of Gaussians (MoG)based approaches incredenning Gaussian average
methods capabilities by using more than a singles&an to model background at each
pixel. With this approach, authofSEG 14] enhances background modelling with the
capability of work in multi modal background scedpar In these scenarios Gaussians
distributions of each pixel are supposed to motel different configurations of the
pixel along the video. This approach has inspieglan background modelling in our
work as it is explained later in this document.

Kernel Density Estimation or KDE tries to add marginal samples influence to the
model, that is, influence of an outlier sample vdolé located at the tails of a Gaussian
in a Mixture of Gaussiansapproach while it is considered when usingRE based
method[SEG 15]. To avoid influence of foreground pixels in thedeb(which influence
used to be marginal when observing a specific pigamples are added to a FIFO
queue.

A quantitative and qualitative comparison amongséhebackground subtraction
technigues can be found[®EG 16].

There are more complex techniquesCasoccurrence of Image Variations[SEG 17
Eigen-backgrounds[SEG 18]andBayesian Modelling[SEG 19] but they are out of the
scope of the proposed approach and in authorsiapiits inclusion in current state-of-
art can divert the attention of a patient reader.

All of the described approaches model the backgtoumndetect the foreground as
exceptions over modelled background. Recent exampdé evolutions and

improvements over basic models can be also comsintgSEG 20]. Other approaches
also model the foreground, as this is the caseagdqsed work, we will briefly describe
the philosophy of these out-of-standard techniques.

In background and foreground modelling techniguleseground is detected by
maximum a posteriori (MAP) measure of trained medel each classs[kha] [ wittal].
Probabilistic models can be any of the descriBadkground subtractiotechniques as
explained in[SEG 21] where they finally decide for a feasible in congiignal time
MoG model. These approaches have also inspiredvork as can be checked in model
description chapters (IV and 1).

Results obtained bBackground subtractiompproaches are not usually good enough
for authors’ requirements either because therenaecuracies in them or owing to an
unsuitable processing time. Therefore, there averakworks that pre or post process
results obtained bBackground subtractiomechniques by using approaches fed with
others sources of information, as in example; efgeS 22], colour[SEG 23], texture
[SEG 24],deepnesESEG 25]or change detectigiSEG 26].

Furthermore, there are several approaches thab tiyse information sources without
giving priority to any of them. In this category wan include the works developed by



[SEG 27] and[SEG 28] where change detection is combined vldckground subtraction
via a Boolean logic and a Bayesan framework regspygt As a result of a deep study
of these approachesEeG 29]proposed a low level fusion based segmentationoagfr
as well as a feedback scheme. This technique hexs dmnsidered a suitable one to be
the starting point of our approach owing to thet that proposed scheme perfectly fit
with a whole semantic system scheme proposed byathbkors. System is later
explained and would be mentioned in other chaptefsthis Master Thesis
documentation.

II.1.b Region based segmentation

In order to categorize and track regions we firs¢dhto segment each frame in such
regions. Regions can be considered, as explainlliMotivation), as groups of
connected pixels that share one or more featudsy(; texture, spatial location inside
a close boundary, etc.)

Region segmentation techniques can be very rowtjhigied in two groups as proposed
in [RSEG 1 Region Growing, where a number of basic regi@eeds) are given and
different strategies are used to join surroundimggimbourhoods; Split approaches,
where the algorithm starts from non uniform regiand subdivides them until reaching
uniform regions; Merge approaches, which start froon uniform regions and merge
them until fulfilling asset of uniformity criterimmong them. Usually, splitting and
merge approaches are used together with merging pest-processing stage after
splitting.

Examples of classicalplitting and mergemethods can be found in papers frfRBEG

2] and[RSEG 3]. Both techniques follow a two-step process: firgttnogeneity criteria
are set and image is split in four quadrants doés not fulfil those criteria. Then each
quadrant is iteratively split in four smaller quandis. Image is thus, segmented in
progressive smaller quadrants (quadtree segmemtatibhis process locally stops in a
quadrant if criteria are fulfilled for it. In theesond stage, two adjacent similar
quadrants armergedif they satisfied the same criteria used in thet tage

[RSEG 4] and[RSEG 5] presented evolvedplitting and mergingmethods. IMRSEG 4]
splitting is made by sequential histogramming fee fcolour features while IfRSEG 5]
image is first splitting into chromatic and achrdimaregions attending to human
perceptual perception of colour. Then chromaticarsg) aresplitted again.Merging is
the post-processing stage in both papers. Additignae can consider ablerging
processeshe classical works proposed IBSEG 6] and [RSEG 7] where authors use
edge information to discriminate if a pixel is ircantour or not before measuring the
similarity to candidate regions.

On the other side, differences between existsapds growingapproaches are
essentially in features nature, similarity critensed to divide/create/fuse regions and in
the technique used with that purpose. As grougietg of pixels to build regions is
equivalent to clustering those pixels in classesryeclassical clustering algorithm can
be use for segmenting an image into regions. Exesnpfl these methods are; the simple
Nearest Neighbours (NNyhich was used IfRSEG 8], the distance between Karhunen-
Loewe Transform (KL) of the original data, parttbé work proposed bRSEG 9], an
algorithm to peak selection in data distribution Bigher projections, explained in
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[RSEG 10] and the popular Mean-ShifRSEG 11] algorithm (we go further in this
algorithm in chapter 1V). Fuzzy logic segmentatlwas also relevance in image region
segmentation and we can consider these methods appoximate way to perform

seeds growing.Examples of fuzzy K-Means approaches can be faufRSEG 12] and
[RSEG 13].

In between seeds growing approaches gpld and mergemethods there are some
others where image segmentation is formulated gsaph partitioning problem. The
graph is subdivided in sub-graphs by pruning weidhtdges of the graph. The total
weight of the pruned edges between two sub-graphalied a cut. Examples of works
developing this technique aRSEG 14] and[RSEG 15].

Other region segmentation techniques are the Eatehpproaches, being the watershed
transformation the more representative one. Wagerdimulates a flooding process
over the image obtaining a topological map repreéisgrthe value of the gradient at
each pixel. Inherently watershed results are veyeddent on gradient estimation. A

good description of watershed transformation carfiobed at[RSEG 16] and at[RSEG
17].

Most of the described region segmentation appraaalhebased on characteristics from
the local neighbourhood of a pixel to decide whetmiding it to an existing region or
creating a new one. This process can be done dithénding discontinuities in the
similarity criteria or by searching surrounding @i that delimitate areas fulfilling
established criteria. That is, finding every pikethe boundaries of the region, we can
also discriminate the region. Work developed [RgEG 18] classifies methods to
segment an image in uniform areas in boundary basddegion based. Advantages of
region based methods are that they do not relylge extraction and consequently, do
not suffer from inaccuracies in this process (esmigden cuts in extracted edges).
However, region based methods usually need a hmgbuat of pixels to compute
reliable statistics in order to build the regiora)d so, usually suffer for over-
segmentation, losing in the best case, part ointlage fine resolution.

Works mentioned in this section up to this poirg af the region based type. While, the
most relevant and interesting works in boundaryefasethods are the so callédtive
Contours Model¢ACM) based approaches. ACM core is the minimizatiomodrzergy
function that describes each contour, this enenggtfon used to have two components,
internal energy which is the part that tries talié active contourto region shape, and
external energy which objective is to separatergion from the rest of the data.

ACM were first formulated byrRSEG 19] but most famous approaches based in ACM
philosophy are those that usgakeqa simile to refer to deformable curves). Snakes ca
be classified either as parametric or as geomeRaametric snakes are explicitly
represented as parameterized curves in Lagrangaulation [RSEG 20}, while
geometrical snakes are represented implicitly amdlve according to the Euler
formulation based on the theory of surface evolumd geometric flowfRSEG 21]
Drawbacks associated with snakes are mainly twet fis initialization dependence
(partially solved by combining snakes and watersfRSEG 22]) and inaccuracy to
converge to the boundary concavities of a regidrerd are several techniques that have
tried to reduce this drawbadRSEG 23] and [RSEG 24}, but they often result in very
complexsnakemodels.



In conclusion, attending to the complexity of th&CM models, the inaccuracies
associated tosplit and merge methods, and the wide use of Mean-Shift region
segmentations in current SoA, we finally choose tast data-set peak estimator to
perform our region segmentation. Furthermore, wee hiatroduced a couple of changes
over the base algorithm to diminish influence oadbws in final segmentation. Next
chapter is related to SoA in shadow detection asdrichination while Mean shift and
the proposed improvements are described in chipter

2 Shadows management

Shadows can be considered the illumination arsfaatith higher influence in
segmentation and tracking results, thus, thereaarensiderable amount of works that
have tried to diminish this influence. In video Bs#&s there are several interesting
constraints related to the presence of a shadow:

- Pixel luminance decreases in comparison with tliathe stored background
model, but commonly, texture of the shadowed serfi@@nains unaltered (in
fact it always remains unaltered, but we can nstirtfyuish it in a complete light
absence situation).

- Light intensity reduction rate is smaller in tharnsition shadow-no shadow.

- Cast shadowsare fused to the objects and are connected to; ttherse are the
focus of most existing techniques. On the otherdhaalf shadowsre part of
the object and are not usually extracted.

Most of the developed segmentation and trackinigrigcies make results conditional to
homogeneity in illumination and scenarios free aght artifacts. Failures in
segmentation, and consequently in tracking, owmnthese unpredicted, but common,
situations are usually assumed, and its solutiodeiayed to specially targeted post
processing techniques. These failures are relaiethd presence of more than one
illumination source as well as to reflection pheema produced on the illuminated
objects surface. Moreover, post processing teclesiglo not usually stand for generic
situations but, instead, focus on the suspiciowmgisegmented areas, as cast shadows
under objects, and try to discriminate them frompligptions targeted items (commonly
moving objects).

Classical post processing techniques use to wockliour spaces in which one or more
of the channels are less prone to shadows, foannst HSV KHue Saturation and
Valug. Then, a set of sometimes empirical threshol@éscanfigured based on ratios
between channels, and pixels under or over thasstibld are considered shadow or
sparkle pixels respectively. Examples of these wa&n be found ifSHD 1], [SHD 2]
and[SHD 3].

In other works, a function to express light andocolcapitation on the camera sensors

has been tried to be modelled. Starting from fumgisimilar to Equatiof2), several
approximations to simplify the model have been pemal.

1= s(/)ef ) o v )d )
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The model expresses the image brightness valumptured by a camera sensor with
spectral responsg/ ), assuming an illumination source with a spectistrithution e(/)

that emits over an object surface with an angleespect to its normal vectaor. The
distribution of the reflected light can be descdli®y the reflectance function(g,v,n,/)

wherev is the camera viewing angle.

Simplifications of the model are proposeds$riD 4] by using colour, texture, darkness
adjacency and temporal consistency properties, ial§eHD 5] which uses temporal
continuity of reflectance and {SHD 6] that combines physical properties of the objects
with some empirical assumptions.

Finally, it can be interesting to mention works eleyed in the area of intrinsic image
extraction. The term was proposed by Barrow andn&arbaum in 1978 when they
were searching a way to decompose an image befli@amation and reflectance sub-
images. The illumination image should contain ladl llumination present in the scene,
while the reflectance (also known as intrinsic)whldhe intrinsic inalterable properties
of the objects.

Decomposition of an image in intrinsic and illuntioa image is obviously far from
simplicity and several authors have proposed diffeways to carry this division out. In
[SHD 7] authors start from the illumination model desatilve Equation(2) to extract,
by illuminating with different temperature lights @alibrated scene, the evolution
direction of the colours, and thus, projecting ith@ge on this direction they obtain the
intrinsic image. IMSHD 8] the authors extend this work, and proposed a rddthavoid
the calibrating phase.

[SHD 9] and[SHD 10] use a different approximation to extract the ingi¢ image. They
make use of a set (normally a big one) of imageswsig the same scene under
different illumination conditions. Extracting bowsmies of each image, they can
differentiate which of them are intrinsic to thejextis and which are owing to light
influence.

We can finally just mention some other wofgsID 11] [SHD 12] that also propose the

use of low level techniques to detect illuminatamifacts and correct its influence in

analysis results (e.g., by using these pixels ttatgpthe background model). However,
we believe that illumination influence does not eqpover isolated pixels in the frame
but, on the contrary, it affects variable-size elbsegions (shadows and sparkles).

According to described objectives, the use of illation invariant techniques or at
least of techniques that diminish illumination ughce is one of the key points of the
proposed Master Thesis.

3 Feedback Schemes

The classical analysis path is sequential: resudts pixel-level analysis feed region
level modules whose results serve as input to blggel analysis and so on. However,
pixel-level analysis stages lack of semantic infation available in higher level

analysis stages. As the proposed work motivatesigbeof stratified layers to avoid the
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semantic gap, it seems adequate to provide the llewers with feed-back of the higher
level information extracted upper in the pyramid.

If we focus in the area related to the feeding iaklplevel segmentation approaches
from higher layers in order to improve both pixevél and global system segmentation
results, we can mention three works in this line.

In [FB 1], with same objects as this Master Thesis, a scherfeed “Time-Adaptative,
Per-Pixel Mixtures of Gaussians” segmentation apgies is proposed. In order to
perform this feedback process they modified classioreground segmentation by
adding region based information and semantics egléab objects in the Gaussians
modeling scheme.

Differently, in[FB 2] a generic scheme to avoid failures in segmentatimnto the scene
noise is proposed. The authors suggest that byntgeesing each frame in different
description levels then, coherence and similaréiween levels can be used to enable
feedback among such levels.

Finally, the already mentioned work [SEG 29](see Il.1.a) is of main relevance in work
under presentation, as it first proposed the feeklls@gheme followed in this Master
Thesis.

4  Tracking approaches

Simple tracking in video analysis can be definedtles problem of estimating the
position of an object in the image plane relateth®position of the same object in the
previous frame, thus, estimating its trajectorynglthe video.

Object tracking is probably one of the main tardesg@plications of video analysis,
especially in security applications. At presentsjayacking is considered not only as a
system final result, but as an essential intermeditep to extract semantically richer
information. Consequently, relevance of a prearse truthful tracking is a key point in
any system which aims either providing useful semadescriptions or reliable
detecting security violations events.

Object tracking approaches differ in: the naturehaf features used to match objects
frame to frame, the representation or containghosge features and the metric used to
measure the dissimilarity between features vectévery tracking method demands

previous object detection or initialization; thesstection can be done with any of the
segmentation approaches described in section.R.1a it can be manually done.

Colour is a main feature to track objects, but ather feature can be added to colour or
used isolated to track objects; results are ustiadyjudge to check if features selection
has been appropriate. When tracking, an objectivigledl in fixed or variable-size
image fractions that can be as small as a pixedootain the object and part of the
background. Features to characterize these inraggdns are in some way extracted
from pixels colour information, which is included DC coefficients or in raw image in
compress or decompress video respectively. Furitvernthe colour of a pixel is a
function of the camera sensor, objects reflectiaityg illumination sources, according to
functions similar to Equation (2put considering three channels and dependencies
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Chapter 2- State of Art

among them. We wont go deeper in colour systemeseptation, as research in this
area can be fruit of whole Master Thesis (or ev&hd. Thesis), and so we recommend
the biblical book of Wyszecki and StilgRcC 1] to deal with the selection of a suitable
system for each problem.

Next chapters try to introduce, very briefly, soafehe main tracking methods without
loosing the general idea of this SoA that is, idtring works that have motivated ours.
Classification of the systems is made accordingvétl know object tracking survey

proposed byTRC 2].

[l.4.a Point Tracking

If the image fraction is as small as a pixel, tragkcan be classified as point-tracking.
Point correspondence is a difficult problem owingadcclusions, misdetections, new
objects appearance and disappearance from the iplege

Point tracking methods can associate a cost to paicih and try to minimize that cost
by combinatorial optimization (called deterministitethods). These methods try to
search a some to some or one to one points agsaci@bme approaches choose a set
of characteristic points extracted for example layri$[TRC 3], SIFT [TRC 4] or SURF
[TRC 5] and try to match these points frame to frameolioW the object. On the other
hand, Hungarian algorithfiRC 6] computes all points possible associations andsghoo
minimal cost to perform the tracking, these metha@susually too heavy to fulfil time
constrains.

Non deterministic approaches, called statisticgbr@@ches consider random noise
influence in point characterization and so consigedel uncertainty when assigning
objects state (object predicted position). One mhest known tracking statistical
methods is the Kalman filter. A Kalman filter iseasto estimate the state of a linear
system where the noise has a Gaussian distribUdenent approaches that deal with
Kalman filtering can be found imRC 7] and[TRC 8]

If object state (and thus noise) is not assumedet@saussian, it is necessary to use
particle filter methodg$TRC 9] where a set of samples of the state of the obpes
weighted according to its observation frequencyn{dang probabilities).

[1.4.b Kernel Tracking

Object is represented either as a whole area (fivenobject), which encloses object
and surrounding background or is divided in seve@its and each part is tracked
separately. Some of the Kernel tracking methodsvia an object (or part of an object)
template and compare it with possible templatethénimage (usually this comparison
is made in the vicinity of the object to minimizeongputational and temporal
constrains).

This template can be in example its Mean-Shift ssgation[TRC 10] where templates
or colour histograms are compared via the Bhattgehaoefficient[TRC 11] or a
covariance matrix of a whole or part of an objeatl és surrounding$TRC 12], the
influence of this work in recent research as wesliita flexibility has turn it a perfect
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state of the art for our tracking approach (we geper in this technique in system
description chapters)

[I.4.c Silhouette Tracking

Finally, and for completeness, we include the si#iite trackers, where either a shape
model or a contour model (which is continuously ated) is searched frame-to-frame
to provide object tracking. Shape matching can besidered similar to template
matching mentioned in previous section: modelsbaiitt via set of points features and
comparison can be made by usingkaisdorff distancgrRC 13].

Contour tracking methods iteratively evolve an i@hitcontour frame-to-frame,

demanding previous and current contour partiallapping and adapting the contour to
frame new configuration. Examples of contour tragkapproaches afeRcC 14] where

a posteriori contour probability is maximized gm&c 15], where an energy function
modelling the temporal optical flow in the bounéari is minimiz
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Chapter 3- System Overview

Il Chapter 3 — System Overview

In this Chapter we present the architecture ofitte@gned and implemented system, and
explain how the system is able to discriminate davend from background regions,
and track foreground regions along time. In nextptars we go deeper in each module
operation.

1  System Scheme

We start from a pixel level segmentation, a SoArapph based on an iterated
combination of a background subtraction and a fraifeerence technique. This
approach is explained insSeG 29] and will be very briefly commented in this Master
Thesis. Additionally, the region level segmentatrandule is the result of improving
the design proposed WYSEG 11] by introducing illumination invariant features time
clustering operation core. From there in advaneeryeother module depicted in the
scheme Figure 1) is fully original, and used approaches have besen inspired in
SoA ideas, fully designed and implemented.

LEGEND

Forward Path ~ —p

FeedBack Path — ™
Information Flow ====%

Input Background
Video > Model
=== Updating
h 4
Region Level _ ficy Final Mask
Segmentation »| Bek Building
MUX :
— Foreground 4 |
Model .
P Updating |
& Region .
N A 4 x Tracking |
| Potential E :
. Pixel Level 5| Foreground | . ' |
| Segmentation d Mask .
| Building |
) |
L. e e e e I

Figure 1. System Scheme

System operation flow at each frame can be destabeording to Figure 1.
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[ll.1.a Pixel and region level segmentation

First, the every incoming video frame is separatefbreground and background by a
pixel-level segmentation modulgeG 29]. In this module a background model based on
a simple Gaussian is built and each frame’s infoiona updates the model.
Additionally, frame difference is computed respiecthe previous frame. Foreground is
then detected as changes in the background modehvanre coherent with frame-
difference information and previous frame segmémaflhe module results in a binary
mask, with foreground pixels activated (‘1’) andckground pixels deactivated ("0").
Actually, this mask includes additional informatide.g., uncovered background).
However, to provide our system with the ability oforking at region level
independently of the system used at pixel level, fiwally decided to use just the
described binary mask, which is commonly the outpdfit almost every pixel
segmentation module.

In parallel, region-level segmentation is perfornmer every incoming frame. The

considered frame is divided in reflectance homogaseegions by a Mean-Shift based
approach. Shadows and light artifacts influencedanginished by using features and
distance measures alternative to those used isicédMean-Shift based approaches.
This region-level segmentation is combined with {higel-level segmentation to

achieve an enhanced pixel-level segmentation maskh additionally includes region-

level information.

[11.1.b Foreground/background region de-multiplexer

To provide the system with the capability of fiirholes and recover miss-detected
parts of the pixel-level foreground segmentatiorsknahis mask is dilated, with an
NxN square structuring element, to builg@tentialforeground mask.

The potential foreground mask indicates to thegmend/background de-multiplexer if
an input region should be considered either a backg region or a potential

foreground region. Confirmed background regionogéh composed of deactivated
pixels in the dilated mask) allow to build and main a consistent background model.
With this information, we can robustly test the biesis of a confirmed new

background region in the current frame to corredpon match to a region in the

background model. Additionally, the potential far@gnd mask provides the capability
of searching for foreground objects just in theiorg activated at low level potential
foreground mask.

[1l.1.c Foreground and background models updating s trategy

Once the region segmentation has been performeahfarcoming frame, the potential
foreground segmentation mask is used to label thigmer as confirmed background or
potential foreground.

Potential foreground regions will be finally assgnto the foreground or to the
background, depending on how well they fit to tbee§round or background model. A
similar operation is performed for confirmed baakgrd regions. These models contain
information to assess the cost of assigning a region to an existing region in the
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Chapter 3- System Overview

model. Once a region has been decided to matchdelled region, the new region
features are used to update the corresponding model

To perform tracking of foreground regions, we jdstd correspondence between
regions in the foreground model and regions cleskifs foreground in the current
frame. Extension of this region tracking to objeatking is then a simple task, which is
described in section.VI4.

When every region in the frame has been used taatapdither foreground or
background models, the final mask resulting of vating foreground regions and
deactivating background regions is used to updaebackground model of the pixel
level segmentation module, this way, performing flexlback stage by using midlevel
(region) results to improve low level (pixel) ansiky.

In next Chapters we explain in detail each of nwd approaches. First, the Mean
Shift implementation used to segment the imageemions (1V), then, the designed
background model and its updating strategy (I), solidwing, the foreground model
used to detect foreground regions and performrtuking between them(l).
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IV Chapter 4 — Mean-Shift Based Region Segmentation
1 Mean-Shift

A deep explanation of the Mean-Shift clusteringoalipm is out of the scope of this
work. We propose the reader to consult the exhastlescription, reasonable
motivation and original formal definition proposédst by [MS 1] and[MS 2] and then
developed (including interesting applications of gystem) IMRSEG 11]. However, a
basic description of Mean-Shift is needed to assegsovements included in this
Master Thesis over the basic system.

Most of the existing clustering techniques needexipus knowledge about the number
or type of clusters to be built. For instance, sil@¥-Means clustering by expectation
maximization (EM) requires the number of clustessn input parametéwis 3]. Mean-
Shift is a non-parametric approximation. This turnde a point in analysis of feature
arbitrary spaces. Furthermore, it is computatign#iss expensive than other non-
parametric approximations as hierarchical K-Means.

The objective of Mean-Shift is to find local extrangpeaks, modes) in the density
distribution of a data set. For continuous distiitms, Mean-shift just iteratively hill-
climbs over the density distribution until it re@sha maximum. To provide robustness,
Mean-Shift works in a delimitated part of the dlstition. The window that encloses
Mean-Shift working area is defined by a kernel &hd size of the window by the
bandwidth of that kernel. This way, the techniqueids the influence of outliers in
peaks estimation and, by shifting the window, ipatde to compute a set of peaks or
modes that implicitly divide the data-set in a bamih-dependent number of clusters.
These clusters are commonly fused in a post promesgtage based on similarity
criteria in order to avoid inaccuracies in the tédu®ig owing to the window size
restriction.

The bandwidth of the kernel (even over the kerhapg) is the most relevant parameter
and consequently, several works have proposed a@pes to choose its value. Value
selection can be fixed (set based on the natur¢hefdata-se{MsS 4]) or it can
dynamically be changed at each dimension of the-sktt distributionMs 5].

In video analysis, most of the proposed approactester colour-spaces data-sets
[RSEG 11], but there are also works that propose to incligdgure [MS 5], or even
oriented energiepvs 6] in the feature data-space. Moreover, it is comnmomtlude
features vector’'s position in the data-set, in ortdeachieve a final set of connected
component clusters. As the nature and range afifesican be extremely different, use
of different bandwidths for each dimension of theattire vector is strongly
recommended.

Dealing with kernel selection, the Epanechnikov nieérappears to be the most
commonly used kernel in application of Mean-shoftvideo analysigvs 7]. Influence

of points in the window falloff with the square tble distance between the point and the
center of the window if the Epanechnikov kernelsed.
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After this brief description of Mean-Shift, in nesection we introduce the new
approaches included in this Master Thesis projéée. start from the popular SoA
implementation proposed II¥SEG 11] and include some improvements both in features
used for the clustering stage and in the distarsesl dor the post processing fusion
process. These improvements are motivated andibledan the following sections.

2 Features description

As explained in the previous section, we have dmrsid Mean-Shift the best tool to
combine the proposed features for three main resason

- The method avoids the selection of fusion rulesctviasually turns to heuristics.

- There is no need to estimate the number of clustergach frame and for each
video.

- Its main parameter, the bandwidth, can be easfipetéfor each of the inputs.

First of all, we present the used features; them,describe their utility in our system
and the way we combine them via Mean-Shift. Addiiby, it is important to remark
that our scheme is based on the fact that Mear-Bag two differentiated phases: a
clustering phase and a cluster fusion phase.

IV.2.a Albedo ratio

In [SHD 5] the authors prove that, under certain conditiath® albedo ratio is
independent of the reflectance function and ofilthenination spectrum. If we consider
that the light source is white colored and that $k@sor response remains constant
across the visible light spectrum, Equation (1)doees:

l=sxex Rg,vn 3)

, Where dependence withhas disappeared,represents the integral of the reflectance
function over the visible light spectrum, aR@ , , n)is the distribution of the reflected
light for the particular wavelength of the inciddight, hence discriminating between
reflective power and reflectance distribution.

If we now consider a particular pixel in a smalkarsurrounded by a smooth
continuous surface, we can assume that, and , are approximately the same for
every neighbour pixel inside such area. Accordmghis simplification we can define
for two neighbouring pixels:

I, =k, ¥, R@,v,n

I, =k, %, R@g,v,n )

, Wherex, =k, =k depends on the light source and sensor respdheseuthors consider
it a constant, but we further discuss about iteeah section 1V.2.b
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Chapter 4- Mean-Shift Based Region Segmentation

From (4) we can develop that neighbour pixels unlerconsidered conditions will
share the same reflective power if they belongheogame material but unequal if they
belong to different ones. The albedo ratio, defiasdt follows, will be an indicator of
this situation:

p=lih (5)

o,
, or, to avoid indetermination whéa O

I2'|1
I+l

(6)

As we are computing the reflectance ratio betweseighbour pixels, we can assume
that all of them are illuminated with the same nilisition emitted by the same sources.
Hence, Equation (6) also holds for multiple illumiion sources. All these expressions
assume that pixel intensity has previously beenngaroompensated.

IV.2.b Color vectors angle

The term k defined in section IV.2.a depends orcdraera sensor, and the illumination
spectrum and intensity. We agree with the authwas $ensor and spectrum can be the
same for neighbouring pixels under detailed cooddj but light intensity can vary
inside a reflectance shared region. The resultepted in previous section fails in
albedo homogeneous regions illuminated with difieretensity light sources:

k*k (7)

, a situation closely related to shadow presendeen\an object blocks a light source,
the area behind the object in the trajectory defibg the light wave and the object
becomes darker. This darkening can result in mediluminated areas (penumbra) or
poorly illuminated areas (umbra) depending on tHative position of the area with

respect to the occluding object, the light sourcd the ambient illumination. In this

situation, pixels belonging to the same materidlibulifferent shady areas won’t share
similar .

To tackle this problem we propose to use the cedotors angle measure as described
in [MS 8], which is claimed to be robust to changes in ilhation intensity. The
measure assumes that, in a gamma-compensated RA8B, spa pixel with a color
vectorc becomes under-illuminated, its modified color vedan be expressed as:

cC= C (8)

Consequently, both vectors share the same orientafihe proportionality factor is
closely related with the light intensity componehk.
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This scheme has some problems derived from thetstei of the RGB color space
(e.g., under low illumination conditions, coloreall almost proportional among them
due to quantification), which have to be considexden using this descriptor.

3  Proposed approach

The novelty of the proposed approach lies in thegration of the two presented
features in the base operation of the Mean-Shgftrehm: just the albedo ratio is used
in the clustering phase and both features are insth@ cluster fusion phase.

IV.3.a Bandwidth selection

The kernel bandwidth is a Mean-Shift parameter tloatrols the criteria or restrictions
to cluster pixels in the clustering phase. Mosinsegtation approaches consider several
pixel features (e.g., position, luminance, colaryl afor each, a similarity range. These
jointly define a multidimensional bandwidth. Thexga implicitly assumes pixel-feature
comparison via the Euclidean distance.

We propose to combine pixel position, compared withEuclidean distance, and pixel
intensity, this compared via its ratio (as definadEquation (6)), hence inherently
including the albedo ratio in the bandwidth selmetiIn this line, the algorithm

establishes that a neighbourhood for a pixel isnddf as the set of pixels that are
spatially closer than 10 pixels and present albesttos smaller than 0.01. These
parameters are set motivated by the assumptione mghD 5].

IV.3.b Clusters fusion

The described Mean-Shift phase clusters regioesditig to local estimations, which
over-segments the scene in a large set of smatinggreflectance-homogeneous in our
case. According to the Mean-Shift technique, a sgqhase performs a cluster fusion,
typically based on inter-cluster similarity evaloat which is based on the same set of
features over their centroids. In order to avoiddsiw influence, as described in section
IV.2.b, the proposed algorithm considers the ceémtor angle in the fusion procedure.

The designed technique first searches for connertgtbns whose centroid color

vectors yield a normalized scalar product closé {@e., are colinear). As the albedo
ratio restrictions should be conserved, every péiconnected regions satisfying the
angle restriction are further examined: first, theroportionality factor between their

respective centroids color vectors is estimatedibigling them; then, this factor is used

to correct the illumination intensity influencendilly, the albedo ratio is re-computed

and the same similarity criteria applied in thetfiphase is applied to merge or not the
pair of connected regions.

At the end of this fusion or merging process angengaegmentation into reflectance
homogeneous regions almost independent of theiilaton intensity is achieved. It is
necessary to remark that the result might be poarery dark umbra and very bright
spark areas where color information is occludethieylack or excess of light.
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Chapter 4- Mean-Shift Based Region Segmentation

Results for the implemented Mean Shift approachbmifound in Figure 2 and Figure
3, where some illustrative results show system perémce in shadows and reflect
elimination.

Original Frame Designed Mean-Shift Region segmeritat

Figure 2. Example of performance in avoiding reflects of dgeed Mean Shift approach

Original Frame Designed Mean-Shift Region segmeritat

Figure 3. Example of performance in avoiding shadows of desd Mean Shift approach
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V Chapter 5 — Background Modelling

The designed background modelling scheme tries Xjgoré classical pixel-level
approaches to region-level analysis.

As explained irchapter l1ll, the proposed scheme starts from alexel segmentation
mask; the aim is both to refine it and to accowntd region-level description of such
mask. Even though some of the inaccuracies in se@t@n can be solved at region
level, there are some problems that need to beidemesl in a higher semantic level,
some of them in object level and others in scerell

In brief, the implemented scheme can be descrikea multilayer background model.

The lowest level in the model contains a regioredagescription of the most common
background appearance. Upper background levelsaiiconhanges in the background
over lowest layer, including moving background ckge(as tree leaves moving by the
wind), changes produced by reflectance propertigheoobjects in the background or
inaccuracies of proposed region segmentation schioma this point in advance, we

refer to these changes as background differenbmegpnfigurations. Changes modelled
by this multilayer background model do not incluit®se produced by foreground

objects in the scene. Regions associated with ttaoeground changes are used to build
and update the foreground model described in chapte

The following sections motivate the use of a majr scheme, explain and justify the
use of the selected features to model each regieach layer, and present the structure
to store those features. Finally, section V3 dettie strategies used to discriminate
background from foreground and those followed tdaip the multilayer background
model.

1 Layer Motivation

The described Mean Shift region-segmentation schesually yields slightly different
region distributions for every frame extracted freanmsequence recorded by a fixed-
camera. Variations are due to several factors. ifiqaty, there are three different
sources oproblems

i.  Unresolved illumination artifacts.
ii.  Multimodal backgrounds.
iii.  Variations of the proposed Mean-Shift scheme.

The influence of illumination sources has been disfied by the proposed Mean Shift
scheme. However, incident light over reflectivefaces, as mirrors or crystal windows,
sometimes results in unstable areas that changelamn and position frame to frame.

These areas can vary its location due to small @wibrations, to object interactions
and even to the nature of the light source. Thasllte in different region configuration

for a same scene background.

The presence of background moving objects as whdenes or tree leaves produces

different regions configuration for every frame, iglhmost pixel level approaches fail
to model.
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Finally, variations in region segmentation resutsing to the threshold-based and
bandwidth dependence nature of the implemented NBsih approach need to be also
considered to design a robust background model.

Our proposal to overcome all these difficultiestasuse a multilayer model, able to
account for the different regions configuration.isTecheme can cope with situations
where a modelled region splits into several regioamsthe current background

segmentation, and vice versa, when several modedgibns merge to one in the
current frame segmentation.

Examples of multilayer background modelling areveman Figure 4 Every row shows
an instance of a background model, composed o tlargers, resulting from different
sources of variation. The model can be extendedax@ layers if the scene background
nature demands it. Similarly, only one layer carubed if desired.

Original Frame Layer 1 Layer 2 Layer 3 Variation
source

1, 1

1, 1

Figure 4. Multilayer background modelling

Observing Layer 1, notice that only regions whichnidt match with those in this layer
are assigned to Layer 2. Regions that match Laysppkar as black areas in Layer 2.
This process can be successively extended to anperof layers.

In the first row, illumination artifacts over theivdow at the left side (reader point of
view based) of the scene produces different regantfigurations that are stored in the
different background layers. The same light artfaare produced in the crystal panels
placed in the upper part of the frame depictedthéstecond row.
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Chapter 5- Background Modelling

Different regions configuration of the frame proddcby typical elements from
multimodal backgrounds are clearly shown in thedtmow of the Figure 4Proposed
background model handles these different regiorfigarations by storing each in a
different layer.

Variations in the region segmentation process ppéiGable to every row in the figure.
This situation produces regions to split in severaions or fuse in one. Proposed
background model store these regions merging aliitirgp processes in its different
layers.

The aim of a background model is to assess foryameoming segmented frame which
regions are considered background and which arsidemred foreground. If a new
segmented region is declared a background regiomar(y of the layers), based on a
similarity measure, such region parameters are tedda the background model.
Consequently, only the first layer has to be fygrtitioned in regions, being different
regions configuration from stored in that layergdhat make up the second layer and
different regions to those in first and second fay®e ones to constitute a third layer
(and so on).

As can be expected, resources limit the numbeaysdrk. If a background region (so
defined by the pixel-level segmentation) does natam any region in any layer, a new
layer is created. This new layer replacesdhiestlayer in the model, that is, the layer
with lower recent update information. In order motloose a whole frame in regions
configuration, the first layer is not a candidaiereplacement.

The implemented scheme provides the system withcaépability of storing different
configurations of a multimodal background evenixgblevel segmentation account for
these situations, as, in example, when usinylaG (see section Il.1.a.2pased
approach. It is important to remark that system lcandle these background changes
only if its influence in pixel level segmentatioppgoaches results in isolated pixels or
in groups of pixels smaller than the region thatl@ses them at the initializing phase of
the multilayer model.

2 Region Features and Region Similarity

Previous sections suggest the need for a regioitasity measure. This section deepens
into the region features involved in such measBetected features include:

- The RGB color vector (three values) of the regiemtmid, obtained from Mean
shift region segmentation.

- The region size (one value).

- The set of color vectors angles between the coreideegion and each of its
neighbouring regions (eight-connectivity, whichuks in eight values).

This results in a twelve values feature vector.i¢¢othat some of these values are
correlated, namely the RGB color vector values,ngwio the nature of RGB color
space (sef@Rc 1]). Taking this under consideration and motivatedh®ypopular work
of [TRC 12] we present a temporal covariance scheme to measuiarity between
feature vectors of two regions.

27



Each region in the background model is represebted covariance matrix which
includes its feature vector evolution along theetinkach position in this twelve-by-
twelve matrix can be computed as:

t+T

Cl.i)= (e -my (f- m' (9)

Where f, represent the value of featurat framet and /77 is the mean value along

time of feature at regionR and at layet.. That is, we compute the covariance of a set
of temporal instances of a region, being each sgmted by a feature vector.

In order to obtain mean values, it is not efficiemstore feature values from the start of
the video till the current frame. Additionally, thgdating solution proposed IyRC

12] highly increases the computational cost of the ritlgm because it is based on the
extraction of the eigenvalues of each covarianceixi@ the update of each position of
the matrix in the Riemannian geometry.

We propose to define a sliding window scheme to mam covariance matrix just
within the lastT - t+ 1 frames. However, we also need to consider vanatiof the
covariance matrix along the video to robustly magleWw changes over the background
(long time modelling).

The strategy used to model these slow backgrouadggs is based on accounting for
the distance between covariance matrices of a mefgaome to frame and it is further
explain in section V.3.c.

Construction of the covariance matrix is of mailevance in current work. In order to
clarify the explained process

Figure 5 schematically depicts the computatiorhaf iatrix for a particular regidR.

According to Figure 5 first, region segmentatiorpe&formed over each frame in the
sliding window (from framé to framet+T). Then, regiorR is isolated from the rest,
and by a static region tracking strategy, explaimeshext section, matched with the
stored representation & in the model. Features of each fraReepresentation are
then used to compute mearof each feature in the window. Means and featares
then used to compute the covariance matrix of regiat framet+T by using Equation

(9).
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Figure 5. Covariance Matrix Construction
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3 Modelling Scheme

This section tries to explain the two phases ofrfggon matching process: selection of
a search area and similarity searching. An explanaif the strategy designed to update
the background concludes this section and thistehap

V.3.a Selection of a search area

In environments where the camera is fixed, backgiocan be assumed either to be
almost static (if it is unimodal) or to presengsli variation (if it has varying objects as
explained when dealing with multimodal background§jultilayer background
modelling can solve some of the problems derivedhfthese different situations, and
thus, if we assume that the number of backgroupersaavailable is capable to model
every possible background, we can consider thatgraand regions are static at each
layer.

As aforementioned, regions in each layer are chetiaed by a covariance matrix. As

incoming frames are segmented, new regions shoealanatched to existing ones.

Background regions are variable in size, and iggpslcan also vary frame to frame due
to scene conditions and to the nature of the Médh implementation. Consequently,

we need a way to robustly define the search ardintbregion matches for a new

region.

The center of gravity of the region seems to beadgoint to center the search area but
its mathematical definition allows it to be outtbk region. Mathematical morphology
offers another possibility: to estimate it by cortipg the geodesic center, which is part
of the region, via Symmetrical Ultimate Erosion.is’bonsists in iteratively eroding a
region until reaching an isolate point, which alwalgelongs to the region under
analysis. If the size of the set of points befdre fast erosion is lower than the active
area of the structuring element, the whole regionld be eroded. In order to avoid the
region whole erosion there are two options: to el@se the size of the structure element
or to choose one of the remaining points befordakieerosion process.

An example of a Symmetrical Ultimate Erosion isidegal in Figure 6:

Figure 6. Ultimate Erosion

Iterative erosion is a quite resource demandingatip®. In order to perform this
process in an efficient way, the distance transfofreach region mask is performed.
We keep the set of local minima of the transforimse are the geodesic centers
candidates. Then, we should compute region Euclidéstances to every candidate and
select the one that minimizes such distance. Howyegefor a search area we really do
not need a perfect geodesic center extraction,ustechoose the spatial medium point
(from left to right and from up to down) of thesat@ntial candidates.
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Chapter 5- Background Modelling

Two examples of geodesic center distribution afterexplained estimation process are
depicted in Figure 7. Observe that more texturedsa(including foreground objects) in
the frame are segmented in a high number of regidrie homogenous areas are fused
into a single region.

Original Frame Designed Mean-Shift Region| Estimated Geodesic Center of
segmentation Segmented Regions

Figure 7: Example of Geodesic Center Estimation

Finally, after locating the new region via its esited geodesic center, we define a
circular search area with radi@round such point and search for matches amonggthe
of regions in the model that overlap with the defirsearch area. The matching process
is explained in the next section.

V.3.b Similarity searching

Once defined the set of candidate regions to maittha given one, we need to define
the measure of similarity we are going to use.

Two alternative similarity measures are definegheteling of the representativeness of
the covariance matrix associated to each regioimchwurther depends on the number
of region updates, which finally depends on the benof previous region matches.

In an initial phase, covariance matrices are ngregentative. Hence, we use the
Euclidean distance between feature vectors to aestinsimilarity. As features are
correlated, this measure is suboptimal.

After the initial phase (i.e., once a sufficientnmher on region matches results in a
representative covariance matrix for regions unomparison), we use the cost of
updating the covariance matrix to estimate sintijjafsiven the covariance matrix for a
particular regionR at layerL and framet, and the covariance matrix of a candidate
matching region at the next frantel we define the cost of updating the covariance
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matrix as the distance between these matricesylagdd following the work proposed
by [BM 1] used as well byrRC 12]:

(.G :\/ " Is,(C, (10)

- RL RL

, Where /k(g:tL,Cé”Ll) are the generalized eigenvalues of matridRé% and C;tl

computed from:

t +1 —
/k%‘LxK- CF::L x=0, k= 1.1 (11)

, Wherex, are the generalized eigenvectors.

As expected, high distances are closely relateld high differences in feature vectors
and low distances with high similarity between oggi. The use of this distance is only
valid if matrices are positive defined, owing te tfact that its calculation requires to

invert C:tl . However, due to the temporal redundancy of aosifieatures of a region

do not vary excessively from frame to frame, whiebults in aCFEtl matrix which is

likely to be just semi positive defined. Fortungtelve can compute the covariance
matrix just with the features that mal(%tl positive defined (i.e., those that are not

identical in previous and current frame). This eas removal, intrinsically results in
diminishing the distance between covariance maridess values in the summation
represented by Equation (10)), which is exactly wwva were looking for: lower
distances for similar feature configurations, etaunting for feature correlations.

The presented covariance-based distance is a kelygidhe proposed approach. Apart
from, using it to match an incoming background oegio a region in the background
model, it will also be used to discriminate betwdsackground and foreground in
incoming regions marked as potential foreground andfind matches between
foreground regions for tracking as it is explaimedhapter V.

Concluding, an incoming segmented region is mat¢bede most similar region in the
model. Similarity can either be evaluated via th&lElean distance (in absence of
enough data) or via the cost of updating the cawnag matrix of the region in model.
Once matched, the covariance matrices distanceekatthe incoming region and the
matched region and the incoming region featuregtae used to update the region in
the background model.

V.3.c Background model updating

Classical pixel-level segmentation approaches magabetl variation with a simple
Gaussian. Using this distribution function, they to be robust to impulsive noise
added by the nature of the camera sensors (commneatdgorized as measuring noise).
Moreover, the use of multiple Gaussians allowsdlegsproaches to converge to every
arbitrary distribution in the values of a pixel itife number of Gaussian is big enough).
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Chapter 5- Background Modelling

Exporting this idea to region-level segmentatiorg aonsidering that every error source
but the impulsive noise influence has been compedsave propose to model the
values of the cost of updating the covariance maddyia simple Gaussian. The use of
multiple background layers can be understood asmidlas (not exactly the same)
approach that the MoG but at region level. Addaibn modelling the cost of updating
the covariance matrices, allows to model someh@ar¢lgion evolution, including both
sudden and slow changes.

In this direction, we propose to use a Running Agerscheme in which the mear) (
and the standard deviation)(of the Gaussian modelling the regiBnat layerL are
updated after a region-match according to the idakfrmulae:

— A t t+1
ﬁ' agﬁ(l- gd(c'.c™) (12)

s'=as "™ (l-a ){'n‘-d(ct,c”l){ (13)
R,L R L R,L R

L RL

Summarizing, each background region is characiigeits geodesic center (which is
able to change frame to frame), the backgroundr layeelongs to, its feature vectors
means, its temporal covariance matrix and by thes&an that model the cost of
updating the covariance matrix.

Next chapter details the process followed to chgsai region marked as potential
foreground in the pixel-level segmentation as bamkgd or foreground, process that be
call region discrimination. Furthermore, a tracksaneme of the foreground regions is
also explained.
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VI Chapter 6 — Foreground Modelling

This chapter describes the process follow to iimiaand update a region based
foreground model. This model is used to classifyepbal foreground regions as
foreground regions (region discrimination) and italfsimilarities between foreground
regions (region tracking).

1  Foreground model description

The foreground model designed in this Master thesissists of a set of foreground
regions characterized (similarly to background @ag) by its geodesic center (which is
able to change frame to frame), its feature vecatwrans, its temporal covariance matrix
and by the Gaussian that model the cost of updasrgpvariance matrix.

System uses potential foreground mask to decidenwreate, update or reset check the
foreground model. Foreground regions do not necgssanain static along the video,
but they can appear, interact with the background disappeared. Consequently
foreground model needs to be created when an dfgjeset of regions) first enters in the
scene, modified with each frame object charactesisextended if more objects entered
in the scene and reset when the objects walk odhefscene. Then the foreground
model can enter in a sleep mode, waiting for newrevious detected objects entering
in the scene.

Region discrimination proposed scheme allows ugdate and initialize the foreground
model. In turn, the foreground model allows theteysto perform foreground region
tracking. Next sections describe both process amhect then with changes in the
foreground model.

2 Region Discrimination

Foreground regions are just searched in the arésaedeby the potential foreground
mask. Regions that significantly overlap with thsask are considered potential
foreground regions. Two hypotheses are formulatad elach potential foreground
region (RPF):

“The region belongs to background# ().
“The region belongs to foregroundH().

In order to checkH,, every potential foreground region undergoes #mesprocess as

an confirmed background region (described in chiagje first geodesic center of the
region is searched and static tracking candidateset around this center (in a circular
area defined by), then we compute the cost of updating covariamegrix of each

candidate region, getting temporal updated coveeanatrix; R|C::|:t ) and updating cost;

d( c ,ct).

RPF,L RL
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If this cost falls inside the Gaussian that desxithe evolution of this cost (see V.3.c)
the hypothesis is temporary accepted, otherwise nieglected, That is:

d( Cc' ,Cc* *E m+ K§L® H, acceptet (14)
R, L

RPF,L RL

, whereK is a standard deviation factor.

Model region covariance matrix is not updated waiPF information in any case until
final RPF discrimination has been performed.

At this point, arRPF can produce none, one or several temporal acceptdfithere are

several temporal accepted hypotheses we just atkepbne that produces a lower
updating cost, this way reducing the possibilit@fs hypothesis state to temporal
accepted and neglected.

If every H, is neglected and foreground model has not be¢alined yet (thusH,can
not be checked) or every possilie is neglected or can not be computable, region is

classified as a new foreground region and a regioforeground model is initialized
with such region characteristics.

Definitive acceptance of a temporary accepteddepends on the result obtained when
formulatingH,. In order to checkH, a similar process tei, formulation is followed.

With the geodesic center extracted, we define euldr searching area of radiQ
foreground model candidates are those of the stimmedjround model (if any) which
geodesic centers are contained in that area. Tpt @adanoving object displacements,
this searching area is bigger than the static ingckearching area. Radios are in a
proportion 3:1 (thug=3"r). If two or more H, are accepted for &PF, we again

temporary accept only the one that produces a loyeéating cost.

If both H, and H, are temporary accepted, we neglect the hypothleaisproduces a

higher updating cost and finally used potentialefpound region to update either
foreground or background model, intrinsically clagsg it as a foreground or
background region.

With this hypothesis-based discrimination systera,are able to classify BPF basing
on its similarity to background and foreground medevhile practically avoiding the
use of thresholds (everywhere but in the conceptsegion overlapping with the
potential foreground mask and in the condition el inside the Gaussian (standard
deviation factorK) that describes the evolution of the cost of uipdgaits covariance
matrix).

3 Region Tracking and Foreground Model Updating

With the foreground model initialized, we are atddormulateH, for a particularPF.
In the case this hypothesis is accepted Byewe assign thisrRPFto foreground.
Additionally, we can assign tha&PF to the region in the model to whieh has been
accepted, thus, matching these regions and perigrenregion based tracking.
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Chapter 6- Foreground Modelling

According to previous section, we can summarize dperation structure oRPF
discrimination and tracking process by means of ypotheses-indexed table.
Considering that, as explain in section VI2, thema be just four possible combinations
of H, andH,; H, accepted orH, neglected andH, accepted orH, neglected, this

hypotheses-indexed table is depicted in Table 1:

H, accepted H, neglected

Background Region| Background Region
H, or Tracked or New

accepted Foreground Region| Foreground Region

(updating cost based) (updating cost based

p—

H, Tracked New
neglected Foreground Region| Foreground Region

Table 1 Hypothesis basedrPF discrimination and tracking processes

Foreground model updating scheme is equivalenhao performed in order to update
the background. Consequently, both models sharesdhee problems at the updating
phase; covariance matrix needs to be representtmegh to be used.

To overcome this initial lack of information, werdi use the Euclidean distance to
simulate the formulation of the hypothesis. This ba considered as a drawback of the
algorithm and, therefore, we change to covarianeseth tracking as soon as region
covariance matrix has been updated with the inftiomaof Euclidean based matching

among three frames.

Finally, this region discrimination process is usem build a final pixel level
segmentation mask by setting to ‘1’ every pixelobging to either a tracked or a new
region and to ‘O’ the pixels inside every new atist tracked background region. This
mask is then use to feed pixel level segmentatignupdating the pixel level
background model only with the ‘0’ pixels in thedi mask.

4  Objects tracking: extension to Connected-Component
Tracking

Region level segmentation can be the base for pljacking, by just considering
connected tracked regions. In this sensed, we fadlsved ideas proposed hym 1].
This work focuses in the context of segmentatiothanH.264 compressed domain, but

37



in our opinion, it is fully exportable to providesua tracking approach robust to
connected-component splitting, merging and occhssio

Our approach and the one describe¢Fm 1] are very similar. However, while in the
work developed inFM 1] the segmentation unit is the macro-block, in ourknibturns
to be the region.

The process starts from a region based descripfi@ach connected-component. First,
each connected-component is extracted from thédammentation mask by performing
a connected-component analysis. This results &t afsblobs, each defined by a mask
that describes the shape and position of each ctedreomponent present in a frame.
Finally, we characterize each blob with the tracled new foreground regions that
overlap with its mask.

The process to export region tracking to connectadponent tracking can be
performed simply by checking the number of regiatsscribing a connected-
component in the current frame that have been éxhdkom regions describing a
connected-component in the previous frame.

With this in mind, we (always followingFm 1]) build a so called Correspondence
Matrix (CMM). In order to build this matrix we firmeed to compute three intermediate
matrices; CM, CMR and CMC:

CM has M +1 rows andN+1 columns, wherem is the number of connected-
components or blobs in the current frame andhe number of blobs in the
previous frame. The extra row and the extra coluapresent the background
area of each frame.

Each positioncM(i, j) indicates the number of regions that simultangousl
characterize blobs and j in its respective frames (hence, these regiong hav

been previously tracked for these two frames). Maoked regions add up to the
background areas.

CMR is defined as:
.. CM(i, j
CMR(, j) =—M1) (15)
CM(i,k)

k=0

, SO that each position @VR(j, j) indicates the proportion of regions from blob
i in the current frame that are tracked from regionblob j of the previous
frame.

CMC is defined as:

emc(, j) = M) (16)
CM(k, j)

k=0
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, SO that, similarly, each position aMc(i, j) indicates the proportion of regions
from blob j in the previous frame that match with regions dbsty blob i in
the current frame.

The highest value of CMR at each rowindicates the most correlated (from a region
conformance perspective) blob in the previous fraBieilarly, the highest value of
CMC at each columnj in the previous frame indicates the most corrdiaiob

extracted in the current frame.

Additionally, we have defined a set of trackingtssafor each blob. Lettin§or be a
foreground blob an&8cka background one:

New blob.0 1 For)

One-to-one tracked blobl ( 1 For)
One-to-several tracked blob, splitting. (M For)
Several-to-one tracked blob, mergingl ( 1 For)
Several-to-several tracked blokV ( M For)
Disappeared blob1( 0 For)

Frame backgroundB¢K)

With this simple scheme, we can just fill each posiin CMM with a tracking status
derived from the values of each position of CMR andC.

Specifically, we search the columnwhich maximizes row in the matrix CMR and
the rowi that maximize$ column of the matrix CMC. We also search for nemsz
positions(i, j) at each matrix.

From this point on, the proposed approach to fdtnmx CMM differs to that explained
in [FM 1]. We just take under consideration some of the plessiimbinations for each
(i,j) at matrices CMR and CMC.

Table 2 presents the algorithm followed to fill CMidiatrix as well as to define blobs
status at each frame. Unconsidered combinatiormositions (i,j) at matrices CMR
and CMC are marked with aiK"in the table.

Every combination Bck, Bck has not been considered due to the fact thaic stat
tracking has already been performed by the regiaokdground model updating
procedure (see section V.3.c).

Dividing Table 2 in four quadrants, the up-left duent illustrates a classic one to one
tracking, but allowing blob appearing and disappeaifrom the scene. Blobs that
appear in the scene and are tracked one to ong &jqmeserve their identification until
they disappear

The up-right quadrant handles blobs splitting; sule identify split blobs should be
fixed, based in final system application and syspmarformance. However, it can be
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useful to provide each split blob a new identifieut storing the identifier of the blob
that splits.

The down-left quadrant represents another commtoiatgdn of blobs tracking: when
several connected-components merge into one. theargh identifiers assignation also
depends on the context of application, in this a@seassign to the merged blokthe
identifier of the maximumj in thei row of the CMR.

Finally, the down-right quadrant deals with a npl#iblob tracking. In our scheme each
M M tracking is treated as a multiple 1.

Unconsidered(i, ) combinations in down-left and up/down-right quadsaare related

to the progressive appearing and disappearing @ bl and blobsM, intrinsically
considered in the region foreground discriminasitnategy proposed in section VI2.

CMC
i is the only i is one of several
non-zero value non-zero values
at column j at column j
CMR
i isBck i isFor i isBck i isFor
j is the
only s s
non zero- J X O 1Fon) J X X
value Bck Bck
at rowi
jis jis
1 0 For 1 1For X 1 MFor
For ( ) ( ) For ( )
i isBck i isFor i isBck i isFor
j is one of
several . .
non zero- 1S X X 1S X X
values Bck Bck
at rowi
s s
] X M 1Fon ] X M M For)
For For

Table 2 Algorithm to fill CMM: Defining a blob status.

Although this blob tracking scheme has been imptast its functionality has not
been fully tested yet. Consequently, results o$ thiob tracking approach are not
included in this Master Thesis documentation

Next chapter presents qualitative results to ithtstthat the initial objectives have been

fulfilled, as well as quantitative results over e ®f Ground-truth sequences which
compare our algorithm with one of the State of Art.
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VIl Chapter 7 — Results

This chapter presents final system segmentationltseg-irst, qualitative results are
shown by means of a set of frames extracted fraah sequences that include light
artifacts as shadows and light reflects. Grounthtritom these sequences is not
available so quantitative results are computed witiother set of sequences with
publicly available ground-truth.

Results, both in the qualitative and in quantigat@nalysis are compared to those
described InSEG 29], which is the initial pixel-level segmentation apg@ch from which
we start (see chapter Ill). The aim of this congmar is to show the improvements
introduced both by our designed region based se@ti@m and by the feedback
processing used to improve low level segmentattoom this point on, we refer to the
work presented IfBEG 29]with the term: ‘state of art approach’.

Presented and additional results are availabl@tap://www-vpu.ii.uam.es/~mev/

1  System configuration

To perform the evaluations, the system has beefgewead with the following
parameters:

Minimum Region Size (MRS) 5/ 3 pixels
(Foreground absence/ Foreground presence

Background Searching Area (r) 6 pixels

Foreground Searching Area (R) 18 pixels

Initial Background Region Covariance Mean 0

( B):

Initial Background Region Covariance 2

Deviation ( B):

Background Region Covariance Deviation 1

Factor (K)

Initial Foreground Region Covariance Mean 0

( F):

Initial Foreground Region Covariance 2

Deviation ( F):

Foreground Region Covariance Deviation 3

Factor (K):

Table 3 System initialization parameters.

MRS is used during Mean-Shift segmentation to pr(argle distance based IV.2.b)
very small regions. Foreground regions are usuaihaller and more textured than
background. Consequently, smaller regions can beighf significance in foreground
areas, and so, we are more permissive in the mmisige restriction.

Background and Foreground searching areas areedefinselect region candidates to

which perform static background region trackingd &reground region tracking; their
utility is explained in sections V.3.a and VI2 respvely.
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Finally, initial foreground and background covadanmean and covariance standard
deviation are set at region initialization in thedel. Foreground covariance models are
used with a lower initialization time than backgnducovariance. This situation requires
a higher flexibility in the matching of foregroumegions; thus, the deviation factor and
the initial standard deviation are higher for taeefjround model.

2  Qualitative Results

The aim of this section is to show the advantagésusing our region-based
segmentation system. These advantages are edygemtielinement of the final mask, in
several aspects; shadows partial or complete elitioim, boundary refinements and

internal holes filling.
First sequence.
Name CO_UPC.avi

Description

Static view of a video-intelligence room. Five pkogequentially enter in the scene and
shake their hands with each other. Four of thendaitn in four chairs, already in the
scene when the video started. The other one siesulatbe a lecturer.

Complexity Factors:

I.Several objects interact in a real video; theydoice shadows over the floor and
the wall.

II. Scene is illuminated by fluorescents, theiduehce results in reflectance areas
distributed along the frame.

lll. Two of the people present in the video weantloés with colors similar to some
areas in the background.

IV.People interact among them, so that precise satmtion masks are needed to
correctly detect those interactions in a higherasm level.

lllustrative frames:

System performance in shadows elimination can Isermed in every frame presented
in Figure 8. Additionally, boundary refinement igarly shown in frames 170 and 473.
However, in frame 763, even most of the objectsagktd boundaries are more adjusted
to real ones, there are some background areaarthadded to the foreground (as those
surrounding the girl sitting in left side of theese). The point is that these areas are
whole regions that suffer iterative activation addactivation along the video,
consequently tracking scheme process described4dirs&ms to be a powerful tool to
eliminate this system inaccuracies.
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Frame 170 473 763
Number

Original
Frame

State of Art
approach

Mean Shift
Region
Segmentation &

Implemented
Approach

Figure 8. Some illustrative frames from region based segméioiaof CO_UPC .avi
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Second sequence.
Name PETS06_S7-T6-B_3 abandoned_object_4cif.avi

Description

Static view of a train station hall where peopldkateough, stop, occludes other people,
leave objects unattended and run. Availablepatts2006.net/

Complexity Factors:

|. Several objects interact in a real video; they poedong shadows over the floor
and the wall.

Il. Scene is illuminated by fluorescents, their infloe results in reflectance areas
distributed along the frame.

[ll. A person remains static for a long time, enoughdaonsidered as background
if any tracking system is used.

IV. People interact among them, precise pixels segr@mtmasks are needed to
correctly detect those interactions in a higherai level.

lllustrative frames:

System performance in shadows elimination is adapicted in Figure 9. Additionally,
objects boundary refinement and hole-filling isreat out in frames 264 and 314.
Reflects produced by crystal panels are eliminatettame 469, but they are not in
fame 314, probably background model has not bebostty updated with this new
region configuration yet.

Observe the grey region appearing at the down-gier of the frame 314. Ideally,
this region should be merged with the rest of tleerf but as explained in section
IV.3.b, designed Mean Shift segmentation can nodleavery umbra-specially dark-
areas where reflectance information has been dfraegluded by light absence.
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Frame 264 314 469
Number

Original
Frame

State of Art
approach

Mean Shift
Region
Segmentation

Implemented
Approach

Figure 9. Frames from region based segmentation of PETSDE 6-B_3.avi
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3  Quantitative Results

There are several quality parameters to measurpdtiermance of an element binary
classification system, where a class is considgyaagive (‘1’) and the other class as
negative (‘0’). However, most of them are ratios fotir parameters that can be
extracted from an element wise comparison betwdsaireed classification and a
‘perfect classification’. These parameters are; thenber of elements correctly
classified for each class (also called true positi’P and true negative$N ) and the
number of elements incorrectly classified as mesbéithe other class (false positives
FP and false negativds\ ).

Dealing with video segmentation, the elements &sgify are the pixels, the classes are
foreground (‘1’) and background (‘0"), and the mitf classification is usually called a
Ground-truth.

The different measures we are going to evaluatedoh video are the following:

Sensitivity [ RLT 1] or true positive rateSj. Measures the proportion of existing
positive elements that are correctly identified sagh. It can be computed by the
formulae:

S——TP 17
TP+ FN (47

, sometimes it is also called positives Recall.rétepixel-level video segmentation,

sensitivity represents the proportion of total gpaund pixels correctly segmented.

Specificity [ RLT 1] or true negatives ratd&). Measures the proportion of existing
negative elements that are correctly identify agatiee by the classification system. It
is common to computk-E, that respond to the formulae:

TN
1-E=1- ———
TN+ FP (18)

, sometime< is also called negatives Recall rate. In pixeklevideo segmentation,
specificity represents the number of total backgtbpixels correctly discriminated as
such background.

Positive precisionRLT 2] (P_F). Measures the proportion of elements classified a
positives that are correctly identified as such.the context of our problem, the
number of pixels classified as foreground thatraedly part of the foreground:

TP
TP+ FP

P_F=1- (19)

Negative precisiornRLT 2] (P_B). Measures the proportion of elements correctly
classified as negative from the total of elemedeniified as members of this class.
That is, the proportion of pixels classified askgaound that are not foreground.
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TN
P B=1 —
- TN+ FN (20)

Positive F1 ScorgrLT 3] (FS_P. Is a measure that combirfesF andSto provide a
global idea of the system performance in detegbogjtive elements, in our context,
foreground pixel. Positive F1 Score best value ad worst 0. We use the traditional
definition of F1 score, that is:

P_F'S

FS_F=2 —=—>2
- P_F+S

(21)

Negative F1 ScorgrLT 3] (FS_B. Can be considered as measure that comifinbls
and E to provide a global idea of the system performawben detecting negative
elements. Negative F1 Score best value is 1 andtvidorWe have used again the
traditional definition of F1 score, that is:

P N E

FS_B=2
- P N+E

(22)

Tested videos with ground-truth have been extracted frdm public databases
available atiRLT 4]. These videos have been artificially generated &g they are
shadow free; so comparison has just been madsequence where multimodality was
present, in order to show the effectiveness ofnouitilayer background modelling.

Third sequence.
Name VSSNO06-video4

Description

The video presents a fixed scene of a house yaiitl avhigh amount of vegetation
which leaves and flowers are constantly moving whawind.

Complexity Factors:

|. Background multimodality

lllustrative frames:

Basically, results show that our algorithm is raldoshe presence of moving elements
typical form multimodality backgrounds, and Statéh@ art algorithm is not.

a7



Frame 30 452 570
Number

Original
Frame

State of Art
approach

Mean Shift
Region
Segmentation

Implemented
Approach

Figure 10. Frames from region based segmentation of VSSN®4iavi

Quantitative evaluation:

Quantitative S 1-E P B PF | FS B | FS_F FS
Measure

State of Art 6.03 | 40.67 |98.69 |0.377 |0.007 |0.734 |0.741
approach % % % %

Implemented 77.0 | 0.89 |99.41 |68.73 |[0.993 | 0.7263|1.719
Approach % % % %

Table 4 Quantitative evaluation of VSSN06-video4.av

Although our algorithm requires a higher initialioa time to get robust foreground
models, Figures Figure 11, Figure 12, Figure 13Fgdre 14 show that, its
performance is better than the state-of-the-artagmh for every quantitative measure
computed.
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Chapter 7~ Results

Figure 11. True Positives percentage comparison (VSSNO6-4iden)

Figure 12. False Positives percentage comparison (VSSNO&idei)

Figure 13. True Negatives percentage comparison (VSSNO@4ide)
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Figure 14. False Negatives percentage comparison (VSSN@»4idvi)
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VIl Chapter 8- Future Work and Conclusions

This chapter introduces future work required orgasged over the developed system.
To organize it, we will divide future work in twaeas, system opportunities and system
limitations.

Systems opportunities refer to future work that nmagrove results, or make use of the
presented system nature and results to perforno\adalysis at a higher semantic level.
On the other hand, system limitations refers toettguments that should be undertaken
as soon as possible to allow video analysis systenmsake use of this work and its

advantages in real video analysis environments.

1  System opportunities

The most relevant future work required in this areathe use of the connected-
component tracking described in section V14 to ioverthe segmentation mask and, by
extension, the system performance. Preliminaryltesd this module indicate that its
integration in the system can refine final resaltsl enhance system robustness.

Each region in the model is well characterized,, atdthe same time, a set of those
regions characterize each connected-componeneisdéne. Region characterization is
quite flexible in the presented approach, so thatrative or complementary features
can be used to model the scene without changingystem nature and philosophy. It
would be of main interest to include textured badedtures in the region
characterization.

Once we account for region and connected-compateracterization, there is a wide
range of extensions to the developed work. Modelésgions can be used to identify
objects, which are, essentially, characterized eotau-components. Obtained object
based descriptions are potentially robust to perftypical high level analysis tasks
which include, but are not limited to, object reotigpn, human detection, object-human
interactivity and human activity recognition.

2  System limitations

Chapter VII does not provide indications on thetexys temporal efficiency or on
computational costs, as the presented implementatioquite resource demanding
(reaching several seconds per frame in the wosst)cavhich is the main limitation of
the system.

Even though a lot of effort has been made in cqatemization, there are several bottle
neck processes in the system which are consumisgy ehthe processing time.

Heaviest processes relate to operations that eedoiage inspection at pixel level,

instead of at region level. These are operatioms jast those involved in region
characterization:
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i.  Mean-Shift segmentation.
ii.  Geodesic Center Estimation.
iii.  Region neighbours searching.

Mean-Shift iteratively searches for convergenc&ma window, centred in a particular
pixel, and checks every pixel status in its clusteiphase. Geodesic center is also a
pixel, and iterative erosion process; even compwiéu the distance transform is a very
heavy process if we compute it in highly textureg@as where many regions are
segmented. Finally, region neighbours searchingireg also the extraction of the
furthest pixel in the region at each searchingeangl|

These three processes are performed independemtbnga them, consuming, in
foreground absence, more than 90 % of the computdtitime. However, an
approximated estimation of the geodesic centertipasand identifiers for each of the
8-connected neighbouring regions are directly abdé at Mean-Shift segmentation
process core. Thus, region characterization caiohe in a faster way.

Furthermore, as this process does not require aswyitrfrom previous frame region
segmentation, it can be performed in parallel te thgion discrimination system
explained in chapters V and VI.

3 Conclusions

We have designed, implemented and presented amatitaregion-based segmentation
system for video sequences recorded by fixed candfast a robust low level

segmentation approach is used to identify poteritegéground areas; in parallel, a
region segmentation process robust to light artefacperformed via a new Mean-shift
implementation. The region segmentation and thelpevel segmentation mask is
combined to achieve region level analysis.

In foreground absence, confirmed background regaresused to build a background
model characterized with the covariance matrix atheregion accumulated features.
Once the model is built, candidate background regiare assessed by matching them
to regions in the modelled background, via a stadigion tracking driven by the
evolution of the covariance matrix.

Foreground is extracted from potential foreground discriminated from background
by executing a hypothesis test. This test the lhgm$ of a potential foreground region
belonging to either the foreground or the backgdotegion model, and is also driven
by modelled region covariance matrix evolution.itedtly, this test performs a region
tracking.

Region level segmentation results are used to egtatbackground model of the pixel-

level segmentation approach, thus performing antauplown information feedback
scheme.
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Chapter 8- Future Work and Conclusions

Finally, an approach to extend this region trackiogclassical connected component
tracking has been designed, inspired in statetpinaplemented but not fully tested.

Concluding, we have designed and implemented aonaaiic and innovative region
segmentation technique, we have robustly categbramed tracked such segmented
regions and we have used final results to feedl{exel segmentation. Results show
that the combination of these processes resuldshiatter segmentation mask, and that
the feedback process efficiently improves pixeklessegmentation approach by
avoiding the influence of this failure factors inadkground updating strategy.
Consequently, we have fulfilled every initial olgjee.

System performance in segmenting objects seems, tim the light of included results,
better than state of art approach, as state adgtoach is a combination of classical
pixel segmentation techniques and its segmentadisuits are showed to be beft&EG

29] than them, we can transitively derive that presgrgystem performance is better
than classical pixel-level algorithm. However, axhaustive studio with a higher
amount of sequences is required to fully suppastithtial observations.

Finally, the main drawback of the system is itshhpyocessing time per frame, which
turn its integration into a higher semantic anaysystem inapplicable at present day;
we would focus future work in this line, and withetaim to avoid this limitation as

soon as possible.
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