
   

UNIVERSIDAD AUTÓNOMA DE MADRID 

ESCUELA POLITÉCNICA SUPERIOR 
 
 

                     
 
 
 

Feedback-based integration of temporal and spatial 
coherence schemes for video-object segmentation 

based on background subtraction.  
 
 

Marcos Escudero Viñolo 

Supervisor: Jesús Bescós Cano 

 
 

TRABAJO DE FIN DE MASTER 
 
 
 
 

Departamento de Ingeniería Informática 
Escuela Politécnica Superior 

Universidad Autónoma de Madrid 
 

Noviembre 2009 
 

 
 
 
 
 
 
 

 





 

  iii   

FEEDBACK-BASED INTEGRATION OF 
TEMPORAL AND SPATIAL COHERENCE 

SCHEMES FOR VIDEO-OBJECT 
SEGMENTATION BASED ON BACKGROUND 

SUBTRACTION 
 

 
 
 
 

Marcos Escudero Viñolo 

Supervisor: Jesús Bescós Cano 
 

e-mail: {marcos.escudero, j.bescos}@uam.es 
 

 
 
 
 
 
 
 
 

 
 

 
 

Video Processing and Understanding Lab. 

 
Departamento de Ingeniería Informática 

 
Escuela Politécnica Superior 

 
Universidad Autónoma de Madrid 

 
Noviembre 2009 

 
 
 





 

  v   

Abstract 
 
The work presented in this Master Thesis deals about video sequences region based 
object segmentation. Work starts from an efficient State of Art pixel level segmentation. 
In parallel, a new Mean-shift approach builds a region segmentation image of each 
frame by clustering pixels in a region focusing in the intrinsic characteristics of real 
objects. Obtaining a region based segmentation where illumination influence has been 
severely diminished. Region segmentation and pixel level segmentation are combined to 
discriminate between foreground and background regions in a scene.  
 
Specifically, these regions are used to build and update a multilayer background and a 
foreground model. Regions in the models are characterized by a time varying 
covariance matrix which encloses a set of relevant features. Covariance matrix 
evolution along the video allows the system to discriminate between foreground and 
background regions. A new static region tracking approach is used to update 
background model while a dynamic region tracking is performed to update foreground 
model and identify regions frame to frame. After region discrimination a simple 
feedback scheme exports segmentation results to pixel level module. Finally, an 
approach to export foreground region tracking to connected-component tracking is 
presented. 
 
Results show that segmentation approach practically avoids illumination artefacts from 
segmentation without any post-processing technique. Additionally, system fills objects 
holes and is exportable to multimodal backgrounds environments. 
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I  Chapter 1 – Introduction 

1 Motivation 
 
Nowadays, one of the main objectives of video understanding techniques is to overcome 
the ‘semantic gap’. The concept of ‘semantic gap’ characterizes the difference between 
two descriptions formulated by different linguistic representations. In video analysis the 
‘semantic gap’ is defined as the empty space between the human perception of content 
and the representation of the content that is included in the digital video signal [I 1]. In 
other words, it is the difference between the formulation of contextual knowledge in a 
powerful language (the human natural language) and its formulation in a formal 
language (in video signals, either the codification standard or the colour representation 
system in raw video).  
 
The concept of ‘semantic gap’ can be extended to the ‘semantic pyramid’ concept, 
which can be understood as a division of the gap in several levels of understanding 
roughness. In video signal, the lowest level in the pyramid would be the pixel level. In 
the next level, pixels can be grouped to form the region level. Upper, a group of regions 
can be categorized as an object in the following level. Finally, the scene or group of 
interrelated objects is at the top of the pyramid. 
 
When interacting with video content, people would like to access information 
(searching, indexing, viewing or tagging it) with high level scene descriptions. That is, 
with requests at the highest level of the pyramid instead of requests at the lowest. For 
instance, a user should query for a dog running in a park and not for a group of brown 
pixels over a bigger group of green ones. 
 
Society demands research and advances in video analysis technology. Several areas of 
interest and applications have been derived from technology development and still need 
new research and results to increase its capabilities. Quoting some of the main ones; 
video-security, computer vision, multimedia content indexing or video coding. 
Weighting current necessities, the potential of an automatic semantic description server 
based in analysis of the digital video signal is enormous.  
 
The digital video signal analysis techniques, which main objective is to generate high 
level semantic descriptions should ascend in the pyramid starting from the lowest level, 
that is, the pixel flow.  Additionally, segmentation and tracking of objects is essential to 
describe what is in the scene and what is happening, that is, to describe the scene in a 
natural language. 
 
Taking these premises under consideration, we believe that region level is not only the 
natural way to ascend from pixel analysis to objects segmentation, but also a key 
intermediate step to control pixels aggregation parameters, to consider illumination 
issues, as well as to characterize objects as bags of regions. Motivation of this project 
relays in the study of strong points, opportunities and benefits of region segmentation 
and tracking in opposition with systems that straight jump from pixel to object level.  
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2 Objectives 
 
The main objective of this Master Thesis is to contribute to reduce the ‘semantic gap’ in 
as generic as possible environments (subordinating them to fixed camera situations). 
With this objective, we use region level analysis techniques both to feed forward object 
level analysis and to feed backward pixel level analysis. 
 
Additionally, this work has specially focused in shadows and sparkles influence in final 
results. Illumination influence is not isolated but covers variable size areas (from small 
regions under objects to the whole frame). According to this, it seems adequate to 
consider illumination effects at region level instead of, as several works stand (see 
section II2), at pixel level. Consequently, the research, development and use of 
illumination-insensitive techniques are the other main objectives of this Master Thesis. 
 
Objectives of current Master Thesis can be listed: 
 
• Design and implementation of automatic and innovative region segmentation 

techniques based on region intrinsic characteristics. 
• Categorization and tracking of segmented regions. 
• Design and implementation of a feedback scheme from region to pixel level 

analysis. System works using two different paths: classical sequential flow and 
feedback flow from high to low level analysis stages. 

 
Summarizing, main research has been made in: 
 
• Selection of features to categorize unequivocally each region. 
• Selection of robust approaches to avoid empirically setting of thresholds. 

 
In conclusion, our aim is to allow the whole system to work as a black box, where video 
frames enter and semantic descriptions at region level are given at the output and feed 
next level. Every part of the work has taken under consideration potential use of regions 
and descriptors to feed next layer in the semantic pyramid. Furthermore, we have kept 
an eye at improvements obtained by feedback strategies at the low level analysis stage. 
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II  Chapter 2 – State of Art 
 

Region segmentation is a sub product of the proposed approach and a pixel level 
segmentation is the starting point of it. Consequently a description of existing 
approaches both in pixel level and region level segmentation is necessary to compare 
technology and show differences between current state of art and designed system. 
 
Region tracking and characterization is the main objective as we have explained and 
motivated in I2.  To show advantages of our system, existing approaches should also be 
included and commented. 
 
Additionally, shadows influence has been diminished in the proposed work; so, the 
implemented technique needs to be compared with existing ones to be assessed in an 
overall view. 
 
Finally, one of the significant points of the approach is the dual path: forward and 
backward. Therefore, developed feedback strategies are briefly described to motivate its 
advantage over layer-independent forward paths. 

1 Segmentation approaches 

II.1.a Low Level Segmentation 
 
Low level Segmentation approaches are those that use low level information to perform 
segmentation. Low level information can be motion vectors, DC or AC coefficients and 
codification modes in compressed domains [SEG 1], [SEG 2], or spatial configuration of 
each frame and temporal configuration of whole video extracted from pixel information 
(when we straight try to segment raw video). 

II.1.a.1 Compressed-domain segmentation techniques 
 
For completeness, we include in current state of art some of the existing segmentation 
approaches that work without decompressing the video stream, but developed work is 
far from these techniques. However, some of them share with the presented work a 
similar semantic-ascending scheme and that turns them relevant to our work. 
 
The main advantage of compressed-domain segmentation is the fact that by working 
directly with compressed data, video does not need to be decompressed and 
consequently, the amount of data to process is between 4 and 64 times smaller in 
comparison with decompressed data. Therefore, analysis should be faster and results 
can be directly used by a video-codec (thus according with recently and poorly 
developed enhancements included in MPEG-4 [SEG 3]. 
 
Most of the existing techniques still work over MPEG-1/2 compressed domain available 
information to perform segmentation. According to parallelism with our work we can 
mention approach of [SEG 4] that uses motion vectors information in conjunction with 
colour information extracted form DC coefficients to segment moving objects in I 
frames (intra-predicted frames).  
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We can observe semantic pyramid ascension in the work proposed by [SEG 5] that 
preliminary over-segments each I frame by applying watershed transform (explained in 
section II.1.b) [SEG 6] and then uses motion information to combine previously 
segmented regions in moving objects.  On the other hand, in [SEG 7] region 
segmentation is performed via motion information clustering along a group of frames, 
while objects boundary refinement is based in colour information extracted from DC 
coefficients. 
 
Finally, the work developed by [SEG 8] proposed a modular technique in which motion 
and temporal tracking of motion vectors is the main source of information to achieve 
segmentation. [SEG 9] includes extensions and enhancements over that work. 
Specifically, their work uses colour information, adds a module that deals with intra-
codified parts of a frame that includes motion information, a technique to avoid 
suddenly disappearance of previously segmented objects, and a starting approach to 
extend results to multi-modal backgrounds.  

II.1.a.2 Raw pixel based segmentation techniques 
 
According to bibliography, background subtraction is the core of pixel based 
segmentation techniques. Its relevance is even higher if we restrict segmentation to 
fixed cameras environments (as we have restricted in our work and is the common 
situation in scenarios as video-surveillance).   
 
Background subtraction approaches are based on building and maintaining a model of 
the background and classify each pixel as either background or foreground depending 
on a measure of the dissimilarity with the stored background model. The nature of the 
model and the way to measure dissimilarity establish the differences between existing 
approaches. 
 
As techniques in segmentation at region level are more similar among them (as we 
explain in section II.1.b) than at pixel level, most of the ideas that inspire our work are 
extracted from pixel level classical techniques and extrapolated to region level.  
 
We can roughly divide existing methods following the well-known survey proposed by 
Piccardi [SEG 10] and make a simple to complex classification. Enumerating; 
 
Running Gaussian average methods are those in where background is modelled 
independently at each pixel. Evolution of each pixel in time is fitted to a Gaussian 
distribution in which influence in the model of past and current samples of the pixels is 
weighted differently; in example for the mean of the Gaussian, see equation (1): 
 

, , , , , , 1(1 )x y f x y f x y fIµ α α µ −= + −              (1) 

 
Where, , ,x y fI  and , ,x y fµ  are the value of the pixel x, y and of the mean of pixel x, y at 

frame f respectively, and α  is the weighting factor (its value should be between 0 and 
1). Running Gaussian average was first proposed by [SEG 11] and is used at the starting 
point of our approach. 
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Temporal median filter methods are those in which pixel value is computed just for a few 
frames that can be consecutives [SEG 12] or sampled along the video [SEG 13]. Obtaining 
more stable background model, by avoiding continuously influence of a pseudo-static 
object that appears somewhere in the middle of a video. 
 
Mixture of Gaussians (MoG) based approaches increase Running Gaussian average 
methods capabilities by using more than a single Gaussian to model background at each 
pixel. With this approach, authors [SEG 14] enhances background modelling with the 
capability of work in multi modal background scenarios. In these scenarios Gaussians 
distributions of each pixel are supposed to model the different configurations of the 
pixel along the video. This approach has inspired region background modelling in our 
work as it is explained later in this document. 
 
Kernel Density Estimation or KDE tries to add marginal samples influence to the 
model, that is, influence of an outlier sample would be located at the tails of a Gaussian 
in a Mixture of Gaussians approach while it is considered when using a KDE  based 
method [SEG 15]. To avoid influence of foreground pixels in the model (which influence 
used to be marginal when observing a specific pixel) samples are added to a FIFO 
queue.   
 
A quantitative and qualitative comparison among these background subtraction 
techniques can be found in [SEG 16]. 
 
There are more complex techniques as Co-occurrence of Image Variations [SEG 17] 
Eigen-backgrounds [SEG 18] and Bayesian Modelling [SEG 19] but they are out of the 
scope of the proposed approach and in authors’ opinion, its inclusion in current state-of-
art can divert the attention of a patient reader. 
 
All of the described approaches model the background to detect the foreground as 
exceptions over modelled background. Recent examples of evolutions and 
improvements over basic models can be also consulted in [SEG 20]. Other approaches 
also model the foreground, as this is the case of proposed work, we will briefly describe 
the philosophy of these out-of-standard techniques.  
 
In background and foreground modelling techniques, foreground is detected by 
maximum a posteriori (MAP) measure of trained models for each class [S. Khan] [  Mittal]. 
Probabilistic models can be any of the described Background subtraction techniques as 
explained in [SEG 21] where they finally decide for a feasible in computational time 
MoG model. These approaches have also inspired our work as can be checked in model 
description chapters (IV and I). 
 
Results obtained by Background subtraction approaches are not usually good enough 
for authors’ requirements either because there are inaccuracies in them or owing to an 
unsuitable processing time. Therefore, there are several works that pre or post process  
results obtained by Background subtraction techniques by using approaches fed with 
others sources of information, as in example; edges [SEG 22], colour [SEG 23], texture 
[SEG 24], deepness [SEG 25] or change detection [SEG 26].  
 
Furthermore, there are several approaches that try to fuse information sources without 
giving priority to any of them. In this category we can include the works developed by 
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[SEG 27] and [SEG 28] where change detection is combined with Background subtraction 
via a Boolean logic and a Bayesan framework respectively. As a result of a deep study 
of these approaches, [SEG 29] proposed a low level fusion based segmentation approach 
as well as a feedback scheme. This technique has been considered a suitable one to be 
the starting point of our approach owing to the fact that proposed scheme perfectly fit 
with a whole semantic system scheme proposed by the authors. System is later 
explained and would be mentioned in other chapters of this Master Thesis 
documentation. 

II.1.b Region based segmentation 
 
In order to categorize and track regions we first need to segment each frame in such 
regions. Regions can be considered, as explain in (I1Motivation), as groups of 
connected pixels that share one or more features (colour, texture, spatial location inside 
a close boundary, etc.)  
 
Region segmentation techniques can be very roughly divided in two groups as proposed 
in [RSEG 1: Region Growing, where a number of basic regions (seeds) are given and 
different strategies are used to join surrounding neighbourhoods; Split approaches, 
where the algorithm starts from non uniform regions and subdivides them until reaching 
uniform regions; Merge approaches, which start from non uniform regions and merge 
them until fulfilling asset of uniformity criteria among them. Usually, splitting and 
merge approaches are used together with merging as a post-processing stage after 
splitting. 
 
Examples of classical splitting and merge methods can be found in papers from [RSEG 
2] and [RSEG 3]. Both techniques follow a two-step process: first, homogeneity criteria 
are set and image is split in four quadrants if it does not fulfil those criteria. Then each 
quadrant is iteratively split in four smaller quadrants. Image is thus, segmented in 
progressive smaller quadrants (quadtree segmentation).  This process locally stops in a 
quadrant if criteria are fulfilled for it. In the second stage, two adjacent similar 
quadrants are merged if they satisfied the same criteria used in the first stage 
  
[RSEG 4] and [RSEG 5] presented evolved splitting and merging methods. In [RSEG 4] 
splitting is made by sequential histogramming for five colour features while in [RSEG 5] 
image is first splitting into chromatic and achromatic regions attending to human 
perceptual perception of colour. Then chromatic regions are splitted again. Merging is 
the post-processing stage in both papers. Additionally, we can consider as Merging 
processes the classical works proposed by [RSEG 6] and [RSEG 7] where authors use 
edge information to discriminate if a pixel is in a contour or not before measuring the 
similarity to candidate regions. 
 
On the other side, differences between existing seeds growing approaches are 
essentially in features nature, similarity criteria used to divide/create/fuse regions and in 
the technique used with that purpose.  As grouping sets of pixels to build regions is 
equivalent to clustering those pixels in classes, every classical clustering algorithm can 
be use for segmenting an image into regions. Examples of these methods are; the simple 
Nearest Neighbours (NN) which was used in [RSEG 8], the distance between Karhunen-
Loewe Transform (KL) of the original data, part of the work proposed by [RSEG 9], an 
algorithm to peak selection in data distribution by Fisher projections, explained in 
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[RSEG 10] and the popular Mean-Shift [RSEG 11] algorithm (we go further in this 
algorithm in chapter IV).  Fuzzy logic segmentation has also relevance in image region 
segmentation and we can consider these methods as an approximate way to perform 
seeds growing.  Examples of fuzzy K-Means approaches can be found in [RSEG 12] and 
[RSEG 13]. 
  
In between seeds growing approaches and split and merge methods there are some 
others where image segmentation is formulated as a graph partitioning problem. The 
graph is subdivided in sub-graphs by pruning weighted edges of the graph. The total 
weight of the pruned edges between two sub-graphs is called a cut. Examples of works 
developing this technique are [RSEG 14] and [RSEG 15]. 
 
Other region segmentation techniques are the level set approaches, being the watershed 
transformation the more representative one. Watershed simulates a flooding process 
over the image obtaining a topological map representing the value of the gradient at 
each pixel. Inherently watershed results are very dependent on gradient estimation. A 
good description of watershed transformation can be found at [RSEG 16] and at [RSEG 
17]. 
 
Most of the described region segmentation approaches are based on characteristics from 
the local neighbourhood of a pixel to decide whether adding it to an existing region or 
creating a new one. This process can be done either by finding discontinuities in the 
similarity criteria or by searching surrounding pixels that delimitate areas fulfilling 
established criteria. That is, finding every pixel in the boundaries of the region, we can 
also discriminate the region. Work developed by [RSEG 18] classifies methods to 
segment an image in uniform areas in boundary based and region based. Advantages of 
region based methods are that they do not rely in edge extraction and consequently, do 
not suffer from inaccuracies in this process (e.g., sudden cuts in extracted edges). 
However, region based methods usually need a high amount of pixels to compute 
reliable statistics in order to build the regions, and so, usually suffer for over-
segmentation, losing in the best case, part of the image fine resolution. 
 
Works mentioned in this section up to this point are of the region based type. While, the 
most relevant and interesting works in boundary based methods are the so called Active 
Contours Models (ACM) based approaches. ACM core is the minimization of an energy 
function that describes each contour, this energy function used to have two components, 
internal energy which is the part that tries to fit the active contour to region shape, and 
external energy which objective is to separate the  region from the rest of the data. 
 
ACM were first formulated by [RSEG 19] but most famous approaches based in ACM 
philosophy are those that use snakes (a simile to refer to deformable curves). Snakes can 
be classified either as parametric or as geometric. Parametric snakes are explicitly 
represented as parameterized curves in Lagrange formulation [RSEG 20], while 
geometrical snakes are represented implicitly and evolve according to the Euler 
formulation based on the theory of surface evolution and geometric flows [RSEG 21]. 
Drawbacks associated with snakes are mainly two: first its initialization dependence 
(partially solved by combining snakes and watershed [RSEG 22]) and inaccuracy to 
converge to the boundary concavities of a region. There are several techniques that have 
tried to reduce this drawback [RSEG 23] and [RSEG 24], but they often result in very 
complex snake models.  
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In conclusion, attending to the complexity of the ACM models, the inaccuracies 
associated to split and merge methods, and the wide use of Mean-Shift region 
segmentations in current SoA, we finally choose this last data-set peak estimator to 
perform our region segmentation. Furthermore, we have introduced a couple of changes 
over the base algorithm to diminish influence of shadows in final segmentation. Next 
chapter is related to SoA in shadow detection and discrimination while Mean shift and 
the proposed improvements are described in chapter IV. 

2 Shadows management 
 
Shadows can be considered the illumination artifacts with higher influence in 
segmentation and tracking results, thus, there are a considerable amount of works that 
have tried to diminish this influence. In video analysis there are several interesting 
constraints related to the presence of a shadow: 
 

- Pixel luminance decreases in comparison with that of the stored background 
model, but commonly, texture of the shadowed surface remains unaltered (in 
fact it always remains unaltered, but we can not distinguish it in a complete light 
absence situation). 

- Light intensity reduction rate is smaller in the transition shadow-no shadow. 
- Cast shadows are fused to the objects and are connected to them; those are the 

focus of most existing techniques. On the other hand, self shadows are part of 
the object and are not usually extracted. 

 
Most of the developed segmentation and tracking techniques make results conditional to 
homogeneity in illumination and scenarios free of light artifacts. Failures in 
segmentation, and consequently in tracking, owing to these unpredicted, but common, 
situations are usually assumed, and its solution is delayed to specially targeted post 
processing techniques. These failures are related to the presence of more than one 
illumination source as well as to reflection phenomena produced on the illuminated 
objects surface. Moreover, post processing techniques do not usually stand for generic 
situations but, instead, focus on the suspicious wrong segmented areas, as cast shadows 
under objects, and try to discriminate them from applications targeted items (commonly 
moving objects).  
 
Classical post processing techniques use to work in colour spaces in which one or more 
of the channels are less prone to shadows, for instance HSV (Hue Saturation and 
Value). Then, a set of sometimes empirical thresholds are configured based on ratios 
between channels, and pixels under or over those threshold are considered shadow or 
sparkle pixels respectively. Examples of these works can be found in [SHD 1], [SHD 2] 
and [SHD 3]. 
 
In other works, a function to express light and colour capitation on the camera sensors 
has been tried to be modelled. Starting from functions similar to Equation (2), several 
approximations to simplify the model have been proposed. 
 

( ) ( ) ( ), , , dI s e r v nλ λ θ λ λ= ⋅ ⋅∫              (2) 
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The model expresses the image brightness value, I, captured by a camera sensor with 
spectral response( )s λ , assuming an illumination source with a spectral distribution ( )e λ   

that emits over an object surface with an angle θ  respect to its normal vector n . The 
distribution of the reflected light can be described by the reflectance function ( ), , ,r v nθ λ  

where v  is the camera viewing angle. 
 
Simplifications of the model are proposed in [SHD 4] by using colour, texture, darkness 
adjacency and temporal consistency properties, also in [SHD 5] which uses temporal 
continuity of reflectance and in [SHD 6] that combines physical properties of the objects 
with some empirical assumptions. 
 
Finally, it can be interesting to mention works developed in the area of intrinsic image 
extraction. The term was proposed by Barrow and Tannembaum in 1978 when they 
were searching a way to decompose an image between illumination and reflectance sub-
images. The illumination image should contain all the illumination present in the scene, 
while the reflectance (also known as intrinsic) shows the intrinsic inalterable properties 
of the objects.  
 
Decomposition of an image in intrinsic and illumination image is obviously far from 
simplicity and several authors have proposed different ways to carry this division out. In   
[SHD 7] authors start from the illumination model described in Equation (2) to extract, 
by illuminating with different temperature lights a calibrated scene, the evolution 
direction of the colours, and thus, projecting the image on this direction they obtain the 
intrinsic image. In [SHD 8] the authors extend this work, and proposed a method to avoid 
the calibrating phase. 
 
[SHD 9] and [SHD 10] use a different approximation to extract the intrinsic image. They 
make use of a set (normally a big one) of images showing the same scene under 
different illumination conditions. Extracting boundaries of each image, they can 
differentiate which of them are intrinsic to the objects and which are owing to light 
influence.  
 
We can finally just mention some other works [SHD 11] [SHD 12]  that also propose the 
use of low level techniques to detect illumination artifacts and correct its influence in 
analysis results (e.g., by using these pixels to update the background model). However, 
we believe that illumination influence does not appear over isolated pixels in the frame 
but, on the contrary, it affects variable-size closed regions (shadows and sparkles).  
 
According to described objectives, the use of illumination invariant techniques or at 
least of techniques that diminish illumination influence is one of the key points of the 
proposed Master Thesis. 

3 Feedback Schemes 
 
The classical analysis path is sequential: results from pixel-level analysis feed region 
level modules whose results serve as input to object level analysis and so on. However, 
pixel-level analysis stages lack of semantic information available in higher level 
analysis stages. As the proposed work motivates the use of stratified layers to avoid the 
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semantic gap, it seems adequate to provide the lower layers with feed-back of the higher 
level information extracted upper in the pyramid. 
 
If we focus in the area related to the feeding of pixel level segmentation approaches 
from higher layers in order to improve both pixel level and global system segmentation 
results, we can mention three works in this line.  
 
In [FB 1], with same objects as this Master Thesis, a scheme to feed “Time-Adaptative, 
Per-Pixel Mixtures of Gaussians” segmentation approaches is proposed. In order to 
perform this feedback process they modified classical foreground segmentation by 
adding region based information and semantics related to objects in the Gaussians 
modeling scheme. 
 
Differently, in [FB 2] a generic scheme to avoid failures in segmentation due to the scene 
noise is proposed. The authors suggest that by decomposing each frame in different 
description levels then, coherence and similarity between levels can be used to enable 
feedback among such levels. 
 
Finally, the already mentioned work of [SEG 29] (see II.1.a) is of main relevance in work 
under presentation, as it first proposed the feedback scheme followed in this Master 
Thesis. 

4 Tracking approaches 
 
Simple tracking in video analysis can be defined as the problem of estimating the 
position of an object in the image plane related to the position of the same object in the 
previous frame, thus, estimating its trajectory along the video. 
 
Object tracking is probably one of the main targeted applications of video analysis, 
especially in security applications. At present days, tracking is considered not only as a 
system final result, but as an essential intermediate step to extract semantically richer 
information.  Consequently, relevance of a precise and truthful tracking is a key point in 
any system which aims either providing useful semantic descriptions or reliable 
detecting security violations events. 
 
Object tracking approaches differ in: the nature of the features used to match objects 
frame to frame, the representation or container of those features and the metric used to 
measure the dissimilarity between features vectors. Every tracking method demands 
previous object detection or initialization; these detection can be done with any of the 
segmentation approaches described in section II.1.a.2 , or it can be manually done.  
 
Colour is a main feature to track objects, but any other feature can be added to colour or 
used isolated to track objects; results are usually the judge to check if features selection 
has been appropriate. When tracking, an object is divided in fixed or variable-size 
image fractions that can be as small as a pixel or contain the object and part of the 
background.  Features to characterize these image fractions are in some way extracted 
from pixels colour information, which is included in DC coefficients or in raw image in 
compress or decompress video respectively. Furthermore, the colour of a pixel is a 
function of the camera sensor, objects reflectivity and illumination sources, according to 
functions similar to Equation (2) but considering three channels and dependencies 
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among them. We wont go deeper in colour systems representation, as research in this 
area can be fruit of whole Master Thesis (or even a Phd. Thesis), and so we recommend 
the biblical book of Wyszecki and Stiles [TRC 1] to deal with the selection of a suitable 
system for each problem. 
 
Next chapters try to introduce, very briefly, some of the main tracking methods without 
loosing the general idea of this SoA that is, introducing works that have motivated ours. 
Classification of the systems is made according to well know object tracking survey 
proposed by [TRC 2]. 

II.4.a Point Tracking 
 
If the image fraction is as small as a pixel, tracking can be classified as point-tracking. 
Point correspondence is a difficult problem owing to occlusions, misdetections, new 
objects appearance and disappearance from the image plane.  
 
Point tracking methods can associate a cost to each point and try to minimize that cost 
by combinatorial optimization (called deterministic methods). These methods try to 
search a some to some or one to one points association. Some approaches choose a set 
of characteristic points extracted for example by Harris [TRC 3], SIFT  [TRC 4]  or SURF 
[TRC 5]  and try to match these points frame to frame to follow the object. On the other 
hand, Hungarian algorithm [TRC 6] computes all points possible associations and choose 
minimal cost to perform the tracking, these methods are usually too heavy to fulfil time 
constrains. 
 
Non deterministic approaches, called statistical approaches consider random noise 
influence in point characterization and so consider model uncertainty when assigning 
objects state (object predicted position). One the most known tracking statistical 
methods is the Kalman filter. A Kalman filter is used to estimate the state of a linear 
system where the noise has a Gaussian distribution. Recent approaches that deal with 
Kalman filtering can be found in [TRC 7] and [TRC 8]  
 
If object state (and thus noise) is not assumed to be Gaussian, it is necessary to use 
particle filter methods [TRC 9] where a set of samples of the state of the objects are 
weighted according to its observation frequency (sampling probabilities).  

II.4.b Kernel Tracking 
 
Object is represented either as a whole area (primitive object), which encloses object 
and surrounding background or is divided in several parts and each part is tracked 
separately. Some of the Kernel tracking methods follows an object (or part of an object) 
template and compare it with possible templates in the image (usually this comparison 
is made in the vicinity of the object to minimize computational and temporal 
constrains). 
 
This template can be in example its Mean-Shift segmentation [TRC 10]  where templates 
or colour histograms are compared via the Bhattacharya coefficient [TRC 11] or a 
covariance matrix of a whole or part of an object and its surroundings [TRC 12], the 
influence of this work in recent research as well as its flexibility has turn it a perfect 
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state of the art for our tracking approach (we go deeper in this technique in system 
description chapters) 

II.4.c Silhouette Tracking 
 
Finally, and for completeness, we include the silhouette trackers, where either a shape 
model or a contour model (which is continuously updated) is searched frame-to-frame 
to provide object tracking. Shape matching can be considered similar to template 
matching mentioned in previous section: models are built via set of points features and 
comparison can be made by using the Hausdorff distance [TRC 13].  
 
Contour tracking methods iteratively evolve an initial contour frame-to-frame, 
demanding previous and current contour partial overlapping and adapting the contour to 
frame new configuration. Examples of contour tracking approaches are [TRC 14] where 
a posteriori contour probability is maximized and [TRC 15], where an energy function 
modelling the temporal optical flow in the boundaries is minimiz
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III  Chapter 3 – System Overview 
 
In this Chapter we present the architecture of the designed and implemented system, and 
explain how the system is able to discriminate foreground from background regions, 
and track foreground regions along time. In next chapters we go deeper in each module 
operation. 

1 System Scheme 
 
We start from a pixel level segmentation, a SoA approach based on an iterated 
combination of a background subtraction and a frame difference technique. This 
approach is explained in  [SEG 29] and will be very briefly commented in this Master 
Thesis. Additionally, the region level segmentation module is the result of improving 
the design proposed by [RSEG 11]  by introducing illumination invariant features in the 
clustering operation core. From there in advance, every other module depicted in the 
scheme (Figure 1) is fully original, and used approaches have been, even inspired in 
SoA ideas, fully designed and implemented. 
 

 
 

Figure 1.  System Scheme 
 
System operation flow at each frame can be described according to Figure 1. 
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III.1.a Pixel and region level segmentation  
 
First, the every incoming video frame is separated in foreground and background by a 
pixel-level segmentation module [SEG 29]. In this module a background model based on 
a simple Gaussian is built and each frame’s information updates the model. 
Additionally, frame difference is computed respect to the previous frame. Foreground is 
then detected as changes in the background model which are coherent with frame-
difference information and previous frame segmentation. The module results in a binary 
mask, with foreground pixels activated (‘1’) and background pixels deactivated (´0´). 
Actually, this mask includes additional information (e.g., uncovered background). 
However, to provide our system with the ability of working at region level 
independently of the system used at pixel level, we finally decided to use just the 
described binary mask, which is commonly the output of almost every pixel 
segmentation module. 
 
In parallel, region-level segmentation is performed over every incoming frame. The 
considered frame is divided in reflectance homogeneous regions by a Mean-Shift based 
approach. Shadows and light artifacts influence are diminished by using features and 
distance measures alternative to those used in classical Mean-Shift based approaches. 
This region-level segmentation is combined with the pixel-level segmentation to 
achieve an enhanced pixel-level segmentation mask, which additionally includes region-
level information.  

III.1.b Foreground/background region de-multiplexer   
 
To provide the system with the capability of filling holes and recover miss-detected 
parts of the pixel-level foreground segmentation mask, this mask is dilated, with an 
NxN square structuring element, to build a potential foreground mask.  
 
The potential foreground mask indicates to the foreground/background de-multiplexer if 
an input region should be considered either a background region or a potential 
foreground region. Confirmed background regions (those composed of deactivated 
pixels in the dilated mask) allow to build and maintain a consistent background model. 
With this information, we can robustly test the hypothesis of a confirmed new 
background region in the current frame to correspond or match to a region in the 
background model. Additionally, the potential foreground mask provides the capability 
of searching for foreground objects just in the regions activated at low level potential 
foreground mask. 
 

III.1.c Foreground and background models updating s trategy  
 
Once the region segmentation has been performed for an incoming frame, the potential 
foreground segmentation mask is used to label them either as confirmed background or 
potential foreground. 
 
Potential foreground regions will be finally assigned to the foreground or to the 
background, depending on how well they fit to the foreground or background model. A 
similar operation is performed for confirmed background regions. These models contain 
information to assess the cost of assigning a new region to an existing region in the 
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model. Once a region has been decided to match a modelled region, the new region 
features are used to update the corresponding model.  
 
To perform tracking of foreground regions, we just find correspondence between 
regions in the foreground model and regions classified as foreground in the current 
frame. Extension of this region tracking to object tracking is then a simple task, which is 
described in section.VI4. 
 
When every region in the frame has been used to update either foreground or 
background models, the final mask resulting of activating foreground regions and 
deactivating background regions is used to update the background model of the pixel 
level segmentation module, this way, performing the feedback stage by using midlevel 
(region) results to improve low level (pixel) analysis.    
 
In next Chapters we explain in detail each of mentioned approaches. First, the Mean 
Shift implementation used to segment the image in regions (IV), then, the designed 
background model and its updating strategy (I), and following, the foreground model 
used to detect foreground regions and perform the tracking between them(I). 
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IV  Chapter 4 – Mean-Shift Based Region Segmentation 

1 Mean-Shift  
 
A deep explanation of the Mean-Shift clustering algorithm is out of the scope of this 
work. We propose the reader to consult the exhaustive description, reasonable 
motivation and original formal definition proposed first by [MS 1] and [MS 2] and then 
developed (including interesting applications of the system) in [RSEG 11]. However, a 
basic description of Mean-Shift is needed to assess improvements included in this 
Master Thesis over the basic system. 
 
Most of the existing clustering techniques need a previous knowledge about the number 
or type of clusters to be built. For instance, classic K-Means clustering by expectation 
maximization (EM) requires the number of clusters as an input parameter [MS 3]. Mean-
Shift is a non-parametric approximation. This turns to be a point in analysis of feature 
arbitrary spaces. Furthermore, it is computationally less expensive than other non-
parametric approximations as hierarchical K-Means. 
 
The objective of Mean-Shift is to find local extrema (peaks, modes) in the density 
distribution of a data set. For continuous distributions, Mean-shift just iteratively hill-
climbs over the density distribution until it reaches a maximum. To provide robustness, 
Mean-Shift works in a delimitated part of the distribution. The window that encloses 
Mean-Shift working area is defined by a kernel and the size of the window by the 
bandwidth of that kernel. This way, the technique avoids the influence of outliers in 
peaks estimation and, by shifting the window, is capable to compute a set of peaks or 
modes that implicitly divide the data-set in a bandwidth-dependent number of clusters. 
These clusters are commonly fused in a post processing stage based on similarity 
criteria in order to avoid inaccuracies in the clustering owing to the window size 
restriction. 
 
The bandwidth of the kernel (even over the kernel shape) is the most relevant parameter 
and consequently, several works have proposed approaches to choose its value. Value 
selection can be fixed (set based on the nature of the data-set [MS 4]) or it can 
dynamically be changed at each dimension of the data-set distribution [MS 5]. 
 
In video analysis, most of the proposed approaches cluster colour-spaces data-sets 
[RSEG 11], but there are also works that propose to include texture [MS 5], or even 
oriented energies [MS 6] in the feature data-space. Moreover, it is common to include 
features vector’s position in the data-set, in order to achieve a final set of connected 
component clusters. As the nature and range of features can be extremely different, use 
of different bandwidths for each dimension of the feature vector is strongly 
recommended. 
 
Dealing with kernel selection, the Epanechnikov kernel appears to be the most 
commonly used kernel in application of Mean-shift to video analysis [MS 7]. Influence 
of points in the window falloff with the square of the distance between the point and the 
center of the window if the Epanechnikov kernel is used.  
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After this brief description of Mean-Shift, in next section we introduce the new 
approaches included in this Master Thesis project. We start from the popular SoA 
implementation proposed by [RSEG 11] and include some improvements both in features 
used for the clustering stage and in the distance used for the post processing fusion 
process. These improvements are motivated and described in the following sections. 
 

2 Features description 
 
As explained in the previous section, we have considered Mean-Shift the best tool to 
combine the proposed features for three main reasons: 
 
• The method avoids the selection of fusion rules, which usually turns to heuristics. 
• There is no need to estimate the number of clusters for each frame and for each 

video.  
• Its main parameter, the bandwidth, can be easily defined for each of the inputs. 

 
First of all, we present the used features; then, we describe their utility in our system 
and the way we combine them via Mean-Shift. Additionally, it is important to remark 
that our scheme is based on the fact that Mean-Shift has two differentiated phases: a 
clustering phase and a cluster fusion phase. 

IV.2.a  Albedo ratio 
 

In [SHD 5] the authors prove that, under certain conditions, the albedo ratio is 
independent of the reflectance function and of the illumination spectrum. If we consider 
that the light source is white colored and that the sensor response remains constant 
across the visible light spectrum, Equation (1) becomes: 
 

( , , )I s e R v nρ θ= ⋅ ⋅ ⋅                      (3) 
 
 
, where dependence with λ has disappeared, ρ represents the integral of the reflectance 
function over the visible light spectrum, and R(θ, ν, n) is the distribution of the reflected 
light for the particular wavelength of the incident light, hence discriminating between 
reflective power and reflectance distribution.  
 

If we now consider a particular pixel in a small area surrounded by a smooth 
continuous surface, we can assume that ν, n, and θ, are approximately the same for 
every neighbour pixel inside such area. According to this simplification we can define 
for two neighbouring pixels: 

 
1 1 1

2 2 2
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( , , )

I k R v n

I k R v n

ρ θ
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= ⋅ ⋅
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                           (4) 

 
, where 1k = 2k = k   depends on the light source and sensor response. The authors consider 
it a constant, but we further discuss about its value in section IV.2.b 
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From (4) we can develop that neighbour pixels under the considered conditions will 
share the same reflective power if they belong to the same material but unequal if they 
belong to different ones. The albedo ratio, defined as it follows, will be an indicator of 
this situation: 

 
1 1

2 2
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I

ρ
ρ

= =                                   (5) 

 

, or, to avoid indetermination when2I  ≈ 0: 
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+
                                  (6) 

 
As we are computing the reflectance ratio between neighbour pixels, we can assume 
that all of them are illuminated with the same distribution emitted by the same sources. 
Hence, Equation (6) also holds for multiple illumination sources. All these expressions 
assume that pixel intensity has previously been gamma-compensated. 
 

IV.2.b  Color vectors angle 
  

The term k defined in section IV.2.a depends on the camera sensor, and the illumination 
spectrum and intensity. We agree with the authors that sensor and spectrum can be the 
same for neighbouring pixels under detailed conditions, but light intensity can vary 
inside a reflectance shared region. The result presented in previous section fails in 
albedo homogeneous regions illuminated with different intensity light sources: 
 

1 2k k≠                                          (7) 
 
, a situation closely related to shadow presence. When an object blocks a light source, 
the area behind the object in the trajectory defined by the light wave and the object 
becomes darker. This darkening can result in medium illuminated areas (penumbra) or 
poorly illuminated areas (umbra) depending on the relative position of the area with 
respect to the occluding object, the light source and the ambient illumination. In this 
situation, pixels belonging to the same material but in different shady areas won’t share 
similar ρ.  
 
To tackle this problem we propose to use the color vectors angle measure as described 
in [MS 8], which is claimed to be robust to changes in illumination intensity. The 
measure assumes that, in a gamma-compensated RGB space, if a pixel with a color 
vector c becomes under-illuminated, its modified color vector can be expressed as:  
 
c′ = α c.                             (8) 
 
Consequently, both vectors share the same orientation. The proportionality factor α is 
closely related with the light intensity component of k. 
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This scheme has some problems derived from the structure of the RGB color space 
(e.g., under low illumination conditions, colors are all almost proportional among them 
due to quantification), which have to be considered when using this descriptor. 

3 Proposed approach  
 
The novelty of the proposed approach lies in the integration of the two presented 
features in the base operation of the Mean-Shift algorithm: just the albedo ratio is used 
in the clustering phase and both features are used in the cluster fusion phase.     

IV.3.a Bandwidth selection 
 
The kernel bandwidth is a Mean-Shift parameter that controls the criteria or restrictions 
to cluster pixels in the clustering phase. Most segmentation approaches consider several 
pixel features (e.g., position, luminance, color) and, for each, a similarity range. These 
jointly define a multidimensional bandwidth. The range implicitly assumes pixel-feature 
comparison via the Euclidean distance.   
 
We propose to combine pixel position, compared with the Euclidean distance, and pixel 
intensity, this compared via its ratio (as defined in Equation (6)), hence inherently 
including the albedo ratio in the bandwidth selection. In this line, the algorithm 
establishes that a neighbourhood for a pixel is defined as the set of pixels that are 
spatially closer than 10 pixels and present albedo ratios smaller than 0.01. These 
parameters are set motivated by the assumptions made in [SHD 5].  

IV.3.b  Clusters fusion 
 
The described Mean-Shift phase clusters regions attending to local estimations, which 
over-segments the scene in a large set of small regions, reflectance-homogeneous in our 
case. According to the Mean-Shift technique, a second phase performs a cluster fusion, 
typically based on inter-cluster similarity evaluation which is based on the same set of 
features over their centroids. In order to avoid shadow influence, as described in section 
IV.2.b, the proposed algorithm considers the color vector angle in the fusion procedure.  

 
The designed technique first searches for connected regions whose centroid color 
vectors yield a normalized scalar product close to 1 (i.e., are colinear). As the albedo 
ratio restrictions should be conserved, every pair of connected regions satisfying the 
angle restriction are further examined: first, the α proportionality factor between their 
respective centroids color vectors is estimated by dividing them; then, this factor is used 
to correct the illumination intensity influence; finally, the albedo ratio is re-computed 
and the same similarity criteria applied in the first phase is applied to merge or not the 
pair of connected regions.  

 
At the end of this fusion or merging process an image segmentation into reflectance 
homogeneous regions almost independent of the illumination intensity is achieved. It is 
necessary to remark that the result might be poor in very dark umbra and very bright 
spark areas where color information is occluded by the lack or excess of light. 
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Results for the implemented Mean Shift approach can be found in Figure 2 and Figure 
3, where some illustrative results show system performance in shadows and reflect 
elimination. 
 

Original Frame Designed Mean-Shift Region segmentation 
 

 
 

 

 

 
Figure 2. Example of performance in avoiding reflects of designed Mean Shift approach 

 
 

Original Frame Designed Mean-Shift Region segmentation 
 

 
 

 

 

 

 

 

 
 

 
Figure 3. Example of performance in avoiding shadows of designed Mean Shift approach 
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V Chapter 5 – Background Modelling 
 
The designed background modelling scheme tries to export classical pixel-level 
approaches to region-level analysis.  
 
As explained in chapter III, the proposed scheme starts from a pixel-level segmentation 
mask; the aim is both to refine it and to account for a region-level description of such 
mask. Even though some of the inaccuracies in segmentation can be solved at region 
level, there are some problems that need to be considered in a higher semantic level,  
some of them in object level and others  in scene level.  
 
In brief, the implemented scheme can be described as a multilayer background model. 
The lowest level in the model contains a region based description of the most common 
background appearance. Upper background levels contain changes in the background 
over lowest layer, including moving background objects (as tree leaves moving by the 
wind), changes produced by reflectance properties of the objects in the background or 
inaccuracies of proposed region segmentation scheme, from this point in advance, we 
refer to these changes as background different region configurations. Changes modelled 
by this multilayer background model do not include those produced by foreground 
objects in the scene. Regions associated with those foreground changes are used to build 
and update the foreground model described in chapter V.    
 
The following sections motivate the use of a multilayer scheme, explain and justify the 
use of the selected features to model each region at each layer, and present the structure 
to store those features. Finally, section V3 details the strategies used to discriminate 
background from foreground and those followed to update the multilayer background 
model.  

1 Layer Motivation 
 
The described Mean Shift region-segmentation scheme usually yields slightly different 
region distributions for every frame extracted from a sequence recorded by a fixed-
camera. Variations are due to several factors. Specifically, there are three different 
sources of problems: 
 

i. Unresolved illumination artifacts. 
ii.  Multimodal backgrounds. 
iii.  Variations of the proposed Mean-Shift scheme. 

 
The influence of illumination sources has been diminished by the proposed Mean Shift 
scheme. However, incident light over reflective surfaces, as mirrors or crystal windows, 
sometimes results in unstable areas that change in color and position frame to frame. 
These areas can vary its location due to small camera vibrations, to object interactions 
and even to the nature of the light source. This results in different region configuration 
for a same scene background.   
 
The presence of background moving objects as water, flames or tree leaves produces 
different regions configuration for every frame, which most pixel level approaches fail 
to model.  
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Finally, variations in region segmentation results owing to the threshold-based and 
bandwidth dependence nature of the implemented Mean Shift approach need to be also 
considered to design a robust background model.  
 
Our proposal to overcome all these difficulties is to use a multilayer model, able to 
account for the different regions configuration. This scheme can cope with situations 
where a modelled region splits into several regions in the current background 
segmentation, and vice versa, when several modelled regions merge to one in the 
current frame segmentation.  
 
Examples of multilayer background modelling are shown in Figure 4. Every row shows 
an instance of a background model, composed of three layers, resulting from different 
sources of variation. The model can be extended to more layers if the scene background 
nature demands it. Similarly, only one layer can be used if desired. 
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Figure 4.  Multilayer background modelling 

 
Observing Layer 1, notice that only regions which do not match with those in this layer 
are assigned to Layer 2. Regions that match Layer 1 appear as black areas in Layer 2. 
This process can be successively extended to any number of layers.  
 
In the first row, illumination artifacts over the window at the left side (reader point of 
view based) of the scene produces different region configurations that are stored in the 
different background layers. The same light artifacts are produced in the crystal panels 
placed in the upper part of the frame depicted in the second row.  
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Different regions configuration of the frame produced by typical elements from 
multimodal backgrounds are clearly shown in the third row of the Figure 4. Proposed 
background model handles these different region configurations by storing each in a 
different layer. 
 
Variations in the region segmentation process are applicable to every row in the figure. 
This situation produces regions to split in several regions or fuse in one. Proposed 
background model store these regions merging and splitting processes in its different 
layers.  
 
The aim of a background model is to assess for every incoming segmented frame which 
regions are considered background and which are considered foreground. If a new 
segmented region is declared a background region (in any of the layers), based on a 
similarity measure, such region parameters are updated in the background model. 
Consequently, only the first layer has to be fully partitioned in regions, being different 
regions configuration from stored in that layer those that make up the second layer and 
different regions to those in first and second layer the ones to constitute a third layer 
(and so on).  
 
As can be expected, resources limit the number of layers. If a background region (so 
defined by the pixel-level segmentation) does not match any region in any layer, a new 
layer is created. This new layer replaces the oldest layer in the model, that is, the layer 
with lower recent update information. In order not to loose a whole frame in regions 
configuration, the first layer is not a candidate for replacement. 
 
The implemented scheme provides the system with the capability of storing different 
configurations of a multimodal background even if pixel-level segmentation account for 
these situations, as, in example, when using a MoG (see section II.1.a.2) based 
approach. It is important to remark that system can handle these background changes 
only if its influence in pixel level segmentation approaches results in isolated pixels or 
in groups of pixels smaller than the region that encloses them at the initializing phase of 
the multilayer model. 

2 Region Features and Region Similarity 
 
Previous sections suggest the need for a region similarity measure. This section deepens 
into the region features involved in such measure. Selected features include:  
 
• The RGB color vector (three values) of the region centroid, obtained from Mean 

shift region segmentation.  
• The region size (one value). 
• The set of color vectors angles between the considered region and each of its 

neighbouring regions (eight-connectivity, which results in eight values).  
 
This results in a twelve values feature vector. Notice that some of these values are 
correlated, namely the RGB color vector values, owing to the nature of RGB color 
space (see [TRC 1]). Taking this under consideration and motivated by the popular work 
of [TRC 12] we present a temporal covariance scheme to measure similarity between 
feature vectors of two regions.  
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Each region in the background model is represented by a covariance matrix which 
includes its feature vector evolution along the time. Each position in this twelve-by-
twelve matrix can be computed as: 
 

, ,
,

( , ) ( ) ( )
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i t i j t j

R L t

i j f fC µ µ
+Τ

= − × −∑                          (9) 

 
Where ,i tf  represent the value of feature i at frame t and iµ  is the mean value along 

time of feature i at region R and at layer L. That is, we compute the covariance of a set 
of temporal instances of a region, being each represented by a feature vector.  
 
In order to obtain mean values, it is not efficient to store feature values from the start of 
the video till the current frame. Additionally, the updating solution proposed by [TRC 
12] highly increases the computational cost of the algorithm because it is based on the 
extraction of the eigenvalues of each covariance matrix to the update of each position of 
the matrix in the Riemannian geometry. 
 
We propose to define a sliding window scheme to compute covariance matrix just 
within the last 1T t− +  frames. However, we also need to consider variations of the 
covariance matrix along the video to robustly model slow changes over the background 
(long time modelling).  
 
The strategy used to model these slow background changes is based on accounting for 
the distance between covariance matrices of a region frame to frame and it is further 
explain in section V.3.c. 
 
Construction of the covariance matrix is of main relevance in current work. In order to 
clarify the explained process  
 
 
Figure 5 schematically depicts the computation of this matrix for a particular region R. 
 
According to Figure 5 first, region segmentation is performed over each frame in the 
sliding window (from frame t to frame t+T). Then, region R is isolated from the rest, 
and by a static region tracking strategy, explained in next section, matched with the 
stored representation of R in the model. Features of each frame R representation are 
then used to compute mean µ of each feature in the window. Means and features are 
then used to compute the covariance matrix of region R at frame t+T by using Equation 
(9). 
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Figure 5.  Covariance Matrix Construction 
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3 Modelling Scheme 
 
This section tries to explain the two phases of the region matching process: selection of 
a search area and similarity searching. An explanation of the strategy designed to update 
the background concludes this section and this chapter. 

V.3.a Selection of a search area 
 
In environments where the camera is fixed, background can be assumed either to be 
almost static (if it is unimodal) or to present slight variation (if it has varying objects as 
explained when dealing with multimodal backgrounds). Multilayer background 
modelling can solve some of the problems derived from these different situations, and 
thus, if we assume that the number of background layers available is capable to model 
every possible background, we can consider that background regions are static at each 
layer. 
 
As aforementioned, regions in each layer are characterized by a covariance matrix. As 
incoming frames are segmented, new regions should be matched to existing ones.  
Background regions are variable in size, and its shape can also vary frame to frame due 
to scene conditions and to the nature of the Mean shift implementation. Consequently, 
we need a way to robustly define the search area to find region matches for a new 
region.  
 
The center of gravity of the region seems to be a good point to center the search area but 
its mathematical definition allows it to be out of the region. Mathematical morphology 
offers another possibility: to estimate it by computing the geodesic center, which is part 
of the region, via Symmetrical Ultimate Erosion. This consists in iteratively eroding a 
region until reaching an isolate point, which always belongs to the region under 
analysis. If the size of the set of points before the last erosion is lower than the active 
area of the structuring element, the whole region would be eroded. In order to avoid the 
region whole erosion there are two options: to decrease the size of the structure element 
or to choose one of the remaining points before the last erosion process. 
 
An example of a Symmetrical Ultimate Erosion is depicted in Figure 6: 
 

 
 

Figure 6. Ultimate Erosion 
 
Iterative erosion is a quite resource demanding operation. In order to perform this 
process in an efficient way, the distance transform of each region mask is performed. 
We keep the set of local minima of the transform; these are the geodesic centers 
candidates. Then, we should compute region Euclidean distances to every candidate and 
select the one that minimizes such distance. However, as for a search area we really do 
not need a perfect geodesic center extraction, we just choose the spatial medium point 
(from left to right and from up to down) of these potential candidates.  
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Two examples of geodesic center distribution after the explained estimation process are 
depicted in Figure 7. Observe that more textured areas (including foreground objects) in 
the frame are segmented in a high number of regions while homogenous areas are fused 
into a single region. 
 

Original Frame Designed Mean-Shift  Region 
segmentation 

Estimated Geodesic Center of 
Segmented Regions 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
Figure 7: Example of Geodesic Center Estimation 

 
Finally, after locating the new region via its estimated geodesic center, we define a 
circular search area with radio r around such point and search for matches among the set 
of regions in the model that overlap with the defined search area. The matching process 
is explained in the next section. 

V.3.b Similarity searching 
 
Once defined the set of candidate regions to match with a given one, we need to define 
the measure of similarity we are going to use.  
 
Two alternative similarity measures are defined, depending of the representativeness of 
the covariance matrix associated to each region, which further depends on the number 
of region updates, which finally depends on the number of previous region matches.  
 
In an initial phase, covariance matrices are not representative. Hence, we use the 
Euclidean distance between feature vectors to estimate similarity. As features are 
correlated, this measure is suboptimal.   
 
After the initial phase (i.e., once a sufficient number on region matches results in a 
representative covariance matrix for regions under comparison), we use the cost of 
updating the covariance matrix to estimate similarity. Given the covariance matrix for a 
particular region R at layer L and frame t, and the covariance matrix of a candidate 
matching region at the next frame t+1 we define the cost of updating the covariance 
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matrix as the distance between these matrices, calculated following the work proposed 
by  [BM 1] used as well by [TRC 12]: 
  

2

, , , ,
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R L R L R L R L
k
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= ∑                   (10)       
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C x C x k 1....nλ +− = =                              (11)  

, where kx  are the generalized eigenvectors. 

 
As expected, high distances are closely related with high differences in feature vectors 
and low distances with high similarity between regions.  The use of this distance is only 
valid if matrices are positive defined, owing to the fact that its calculation requires to 

invert 
,R L

t 1C + . However, due to the temporal redundancy of a video, features of a region 

do not vary excessively from frame to frame, which results in a 
,R L

t 1C +  matrix which is 

likely to be just semi positive defined. Fortunately, we can compute the covariance 

matrix just with the features that make 
,R L

t 1C +  positive defined (i.e., those that are not 

identical in previous and current frame). This features removal, intrinsically results in 
diminishing the distance between covariance matrices (less values in the summation 
represented by Equation (10)), which is exactly what we were looking for: lower 
distances for similar feature configurations, but accounting for feature correlations. 
 
The presented covariance-based distance is a key point of the proposed approach. Apart 
from, using it to match an incoming background region to a region in the background 
model, it will also be used to discriminate between background and foreground in 
incoming regions marked as potential foreground and to find matches between 
foreground regions for tracking as it is explained in chapter V. 
 
Concluding, an incoming segmented region is matched to the most similar region in the 
model. Similarity can either be evaluated via the Euclidean distance (in absence of 
enough data) or via the cost of updating the covariance matrix of the region in model. 
Once matched, the covariance matrices distance between the incoming region and the 
matched region and the incoming region features are then used to update the region in 
the background model.  

V.3.c Background model updating 
 
Classical pixel-level segmentation approaches model pixel variation with a simple 
Gaussian. Using this distribution function, they try to be robust to impulsive noise 
added by the nature of the camera sensors (commonly categorized as measuring noise). 
Moreover, the use of multiple Gaussians allows these approaches to converge to every 
arbitrary distribution in the values of a pixel (if the number of Gaussian is big enough). 
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Exporting this idea to region-level segmentation, and considering that every error source 
but the impulsive noise influence has been compensated, we propose to model the 
values of the cost of updating the covariance matrix by a simple Gaussian.  The use of 
multiple background layers can be understood as a similar (not exactly the same) 
approach that the MoG but at region level. Additionally, modelling the cost of updating 
the covariance matrices, allows to model somehow the region evolution, including both 
sudden and slow changes. 
 
In this direction, we propose to use a Running Average scheme in which the mean (µ) 
and the standard deviation (σ) of the Gaussian modelling the region R at layer L are 
updated after a region-match according to the classical formulae: 
 

, ,, ,

t t -1 t t+1

R L R LR L R L
= +(1- )d(C ,C )µ αµ α               (12) 

, , , ,,

t t -1 t t t+1

R L R L R L R LR L
= +(1- ) - d( C ,C )σ ασ α µ              (13) 

 
Summarizing, each background region is characterized by its geodesic center (which is 
able to change frame to frame), the background layer it belongs to, its feature vectors 
means, its temporal covariance matrix and by the Gaussian that model the cost of 
updating the covariance matrix. 
 
Next chapter details the process followed to classify a region marked as potential 
foreground in the pixel-level segmentation as background or foreground, process that be 
call region discrimination. Furthermore, a tracking scheme of the foreground regions is 
also explained. 
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VI  Chapter 6 – Foreground Modelling 
 
This chapter describes the process follow to initialize and update a region based 
foreground model. This model is used to classify potential foreground regions as 
foreground regions (region discrimination) and to find similarities between foreground 
regions (region tracking). 

1 Foreground model description 
 
The foreground model designed in this Master thesis consists of a set of foreground 
regions characterized (similarly to background regions) by its geodesic center (which is 
able to change frame to frame), its feature vectors means, its temporal covariance matrix 
and by the Gaussian that model the cost of updating its covariance matrix.  
 
System uses potential foreground mask to decide when create, update or reset check the 
foreground model. Foreground regions do not necessary remain static along the video, 
but they can appear, interact with the background and disappeared. Consequently 
foreground model needs to be created when an object (a set of regions) first enters in the 
scene, modified with each frame object characteristics, extended if more objects entered 
in the scene and reset when the objects walk out of the scene. Then the foreground 
model can enter in a sleep mode, waiting for new or previous detected objects entering 
in the scene. 
 
Region discrimination proposed scheme allows us to create and initialize the foreground 
model. In turn, the foreground model allows the system to perform foreground region 
tracking.  Next sections describe both process and connect then with changes in the 
foreground model. 

2 Region Discrimination 
 
Foreground regions are just searched in the area defined by the potential foreground 
mask. Regions that significantly overlap with this mask are considered potential 
foreground regions. Two hypotheses are formulated for each potential foreground 
region (RPF ):  
 

• “The region belongs to background” (0H ). 

• “The region belongs to foreground” (1H ). 
 

In order to check 0H , every potential foreground region undergoes the same process as 
an confirmed background region (described in chapter V); first geodesic center of the 
region is searched and static tracking candidates are set around this center (in a circular 
area defined by r), then we compute the cost of updating covariance matrix of each 
candidate region, getting temporal updated covariance matrix; 

,

t

RPF L
C  and updating cost; 

, ,

t t+1

RPF L R L
d( C ,C ).  
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If this cost falls inside the Gaussian that describes the evolution of this cost (see V.3.c) 
the hypothesis is temporary accepted, otherwise, it is neglected, That is: 
 

0
, , ,,

   t t+1 t t

RPF L R L R LR L
d( C ,C ) K H acceptedµ σ≤ + →            (14) 

 
, where K is a standard deviation factor. 
 
Model region covariance matrix is not updated with RPF  information in any case until 
final RPF  discrimination has been performed. 
 
At this point, a RPF  can produce none, one or several temporal accepted0H . If there are 
several temporal accepted hypotheses we just accept the one that produces a lower 
updating cost, this way reducing the possibilities of hypothesis state to temporal 
accepted and neglected. 
 
If every 0H  is neglected and foreground model has not been initialized yet (thus 1H can 
not be checked) or every possible 1H  is neglected or can not be computable, region is 
classified as a new foreground region and a region in foreground model is initialized 
with such region characteristics. 
 
Definitive acceptance of a temporary accepted 0H  depends on the result obtained when 
formulating 1H . In order to check 1H  a similar process to 0H  formulation is followed. 
With the geodesic center extracted, we define a circular searching area of radio R, 
foreground model candidates are those of the stored foreground model (if any) which 
geodesic centers are contained in that area. To adapt to moving object displacements, 
this searching area is bigger than the static tracking searching area. Radios are in a 
proportion 3:1 (thus 3R r= × ). If two or more 1H  are accepted for a RPF , we again 
temporary accept only the one that produces a lower updating cost. 
 
If both 0H  and 1H  are temporary accepted, we neglect the hypothesis that produces a 
higher updating cost and finally used potential foreground region to update either 
foreground or background model, intrinsically classifying it as a foreground or 
background region. 
 
With this hypothesis-based discrimination system, we are able to classify a RPF  basing 
on its similarity to background and foreground models, while practically avoiding the 
use of thresholds (everywhere but in the concepts of region overlapping with the 
potential foreground mask and in the condition of being inside the Gaussian (standard 
deviation factor K) that describes the evolution of the cost of updating its covariance 
matrix).  

3 Region Tracking and Foreground Model Updating 
 
With the foreground model initialized, we are able to formulate 1H  for a particularRPF . 
In the case this hypothesis is accepted over0H  we assign this RPF to foreground. 
Additionally, we can assign that RPF  to the region in the model to which1H  has been 
accepted, thus, matching these regions and performing a region based tracking.  
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According to previous section, we can summarize the operation structure of RPF  
discrimination and tracking process by means of a hypotheses-indexed table. 
Considering that, as explain in section VI2, there can be just four possible combinations 
of 0H  and 1H ; 0H  accepted or 0H  neglected and 1H  accepted or 1H  neglected, this 
hypotheses-indexed table is depicted in Table 1:  
 

  

1H  accepted  
 

1H  neglected 

 
 
0H  

accepted 

 
Background Region 

or  Tracked 
Foreground Region 

(updating cost based) 
 

 
Background Region 

or  New  
Foreground Region 

(updating cost based) 
 

 
 

0H  
neglected 

 
 

Tracked  
Foreground Region 

 
 

 
 

New  
Foreground Region 

 

 
Table 1 Hypothesis based RPF discrimination and tracking processes 

 
Foreground model updating scheme is equivalent to that performed in order to update 
the background. Consequently, both models share the same problems at the updating 
phase; covariance matrix needs to be representative enough to be used.  
 
To overcome this initial lack of information, we first use the Euclidean distance to 
simulate the formulation of the hypothesis. This can be considered as a drawback of the 
algorithm and, therefore, we change to covariance based tracking as soon as region 
covariance matrix has been updated with the information of Euclidean based matching 
among three frames. 
 
Finally, this region discrimination process is used to build a final pixel level 
segmentation mask by setting to ‘1’ every pixel belonging to either a tracked or a new 
region and to ‘0’ the pixels inside every new or static tracked background region. This 
mask is then use to feed pixel level segmentation by updating the pixel level 
background model only with the ‘0’ pixels in the final mask. 
 

4 Objects tracking: extension to Connected-Component 
Tracking 

 
Region level segmentation can be the base for object tracking, by just considering 
connected tracked regions. In this sensed, we have followed ideas proposed by [FM 1] . 
This work focuses in the context of segmentation in the H.264 compressed domain, but 
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in our opinion, it is fully exportable to provide us a tracking approach robust to 
connected-component splitting, merging and occlusions. 
 
Our approach and the one described in [FM 1] are very similar. However, while in the 
work developed in [FM 1] the segmentation unit is the macro-block, in our work it turns 
to be the region.  
 
The process starts from a region based description of each connected-component. First, 
each connected-component is extracted from the final segmentation mask by performing 
a connected-component analysis. This results in a set of blobs, each defined by a mask 
that describes the shape and position of each connected-component present in a frame. 
Finally, we characterize each blob with the tracked and new foreground regions that 
overlap with its mask. 
 
The process to export region tracking to connected-component tracking can be 
performed simply by checking the number of regions describing a connected-
component in the current frame that have been tracked from regions describing a 
connected-component in the previous frame.  
 
With this in mind, we (always following [FM 1] ) build a so called Correspondence 
Matrix (CMM). In order to build this matrix we first need to compute three intermediate 
matrices; CM, CMR and CMC: 
 

• CM has 1M +  rows and 1N +  columns, where M is the number of connected-
components or blobs in the current frame and N  the number of blobs in the 
previous frame. The extra row and the extra column represent the background 
area of each frame. 

 
Each position ( , )CM i j  indicates the number of regions that simultaneously 
characterize blobs i  and j  in its respective frames (hence, these regions have 
been previously tracked for these two frames). Non-tracked regions add up to the 
background areas.  

 
• CMR is defined as: 

 

0

( , )
( , )

( , )
N

k

CM i j
CMR i j

CM i k
=

=
∑

           (15) 

 
, so that each position of ( , )CMR i j  indicates the proportion of regions from blob 
i  in the current frame that are tracked from regions in blob j  of the previous 
frame. 
 

• CMC is defined as: 
 

0

( , )
( , )

( , )
M

k

CM i j
CMC i j

CM k j
=

=
∑

           (16) 
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, so that, similarly, each position of ( , )CMC i j  indicates the proportion of regions 
from blob j  in the previous frame that match with regions describing blob i  in 
the current frame. 

 
The highest value of CMR at each row i  indicates the most correlated (from a region 
conformance perspective) blob in the previous frame. Similarly, the highest value of 
CMC at each column j  in the previous frame indicates the most correlated blob 
extracted in the current frame. 
 
Additionally, we have defined a set of tracking status for each blob. Letting For be a 
foreground blob and Bck a background one: 
 

• New blob.(0�1 For) 
• One-to-one tracked blob. (1�1 For) 
• One-to-several tracked blob, splitting. (1�M For)  
• Several-to-one tracked blob, merging. (M�1 For)  
• Several-to-several tracked blob.  (M�M For)  
• Disappeared blob. (1�0  For) 
• Frame background. (Bck) 

 
With this simple scheme, we can just fill each position in CMM with a tracking status 
derived from the values of each position of CMR and CMC.   
 
Specifically, we search the column j  which maximizes i  row in the matrix CMR and 
the row i  that maximizesj  column of the matrix CMC. We also search for non-zero 

positions ( , )i j  at each matrix. 
 
From this point on, the proposed approach to fill matrix CMM differs to that explained 
in [FM 1]. We just take under consideration some of the possible combinations for each 
( , )i j  at matrices CMR and CMC.  
 
Table 2 presents the algorithm followed to fill CMM matrix as well as to define blobs 
status at each frame. Unconsidered combinations of positions ( , )i j  at matrices CMR 
and CMC are marked with an ‘X’ in the table. 
 
Every combination (Bck, Bck) has not been considered due to the fact that static 
tracking has already been performed by the region background model updating 
procedure (see section V.3.c). 
 
Dividing Table 2 in four quadrants, the up-left quadrant illustrates a classic one to one 
tracking, but allowing blob appearing and disappearing from the scene. Blobs that 
appear in the scene and are tracked one to one along it, preserve their identification until 
they disappear  
 
The up-right quadrant handles blobs splitting; rules to identify split blobs should be 
fixed, based in final system application and system performance. However, it can be 
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useful to provide each split blob a new identifier, but storing the identifier of the blob 
that splits.  
 
The down-left quadrant represents another common situation of blobs tracking: when 
several connected-components merge into one.  Even though identifiers assignation also 
depends on the context of application, in this case we assign to the merged blob i  the 
identifier of the maximum j  in the i  row of the CMR.  
 
Finally, the down-right quadrant deals with a multiple blob tracking. In our scheme each 
M�M tracking is treated as a multiple 1�1. 
 
Unconsidered ( , )i j combinations in down-left and up/down-right quadrants are related 
to the progressive appearing and disappearing of blob i  and blobs M, intrinsically 
considered in the region foreground discrimination strategy proposed in section VI2. 
 

CMC 
 
 
 

CMR 

 
i  is the only 

non-zero value 
at column j  

 

i  is one of several 
non-zero values 

at column j  

 i  is Bck i  is For  i  is Bck i  is For 

j  is 

Bck 
X (0�1 For) 

j  is 

Bck 
X X 

 
 

j  is the 

only 
non zero-

value 
at row i  

 
 

j  is 

For 
(1�0  For) (1�1 For) 

j  is 

For 
X (1�M For) 

 i  is Bck i  is For  i  is Bck i  is For 

j  is 

Bck 
X X 

j  is 

Bck 
X X 

j  is one of 

several 
non zero-

values 
at row i  

j  is 

For 
X (M�1 For) 

j  is 

For 
X (M�M For) 

 
Table 2 Algorithm to fill CMM:  Defining a blob sta tus. 

 
Although this blob tracking scheme has been implemented, its functionality has not 
been fully tested yet. Consequently, results of this blob tracking approach are not 
included in this Master Thesis documentation 
 
Next chapter presents qualitative results to illustrate that the initial objectives have been 
fulfilled, as well as quantitative results over a set of Ground-truth sequences which 
compare our algorithm with one of the State of Art. 
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VII  Chapter 7 – Results 
 
This chapter presents final system segmentation results. First, qualitative results are 
shown by means of a set of frames extracted from real sequences that include light 
artifacts as shadows and light reflects. Ground-truth from these sequences is not 
available so quantitative results are computed with another set of sequences with 
publicly available ground-truth.  
 
Results, both in the qualitative and in quantitative analysis are compared to those 
described in [SEG 29], which is the initial pixel-level segmentation approach from which 
we start (see chapter III).  The aim of this comparison is to show the improvements 
introduced both by our designed region based segmentation and by the feedback 
processing used to improve low level segmentation. From this point on, we refer to the 
work presented in [SEG 29] with the term: ‘state of art approach’. 
 

Presented and additional results are available at:  http://www-vpu.ii.uam.es/~mev/ 
 

1 System configuration 
 
To perform the evaluations, the system has been configured with the following 
parameters: 
 
Minimum Region Size (MRS) 5 / 3 pixels 

(Foreground absence/ Foreground presence) 
Background Searching Area (r) 6 pixels 

 
Foreground Searching Area (R) 18 pixels 

 
Initial Background Region Covariance Mean 
(µB): 

0 

Initial Background Region Covariance 
Deviation (σB): 

2 

Background Region Covariance Deviation 
Factor (K)  

1 

Initial Foreground Region Covariance Mean 
(µF): 

0 

Initial Foreground Region Covariance 
Deviation (σF): 

2 

Foreground Region Covariance Deviation 
Factor (K): 

3 

 
Table 3 System initialization parameters. 

 
MRS is used during Mean-Shift segmentation to prune (angle distance based IV.2.b) 
very small regions.  Foreground regions are usually smaller and more textured than 
background. Consequently, smaller regions can be of high significance in foreground 
areas, and so, we are more permissive in the minimum size restriction. 
 
Background and Foreground searching areas are defined to select region candidates to 
which perform static background region tracking, and foreground region tracking; their 
utility is explained in sections V.3.a and VI2 respectively. 
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Finally, initial foreground and background covariance mean and covariance standard 
deviation are set at region initialization in the model. Foreground covariance models are 
used with a lower initialization time than background covariance. This situation requires 
a higher flexibility in the matching of foreground regions; thus, the deviation factor and 
the initial standard deviation are higher for the foreground model. 

2 Qualitative Results 
 
The aim of this section is to show the advantages of using our region-based 
segmentation system. These advantages are essentially a refinement of the final mask, in 
several aspects; shadows partial or complete elimination, boundary refinements and 
internal holes filling. 
 
► First sequence. 
 
Name:  C0_UPC.avi 

 
Description:  
 
Static view of a video-intelligence room. Five people sequentially enter in the scene and 
shake their hands with each other. Four of them sit down in four chairs, already in the 
scene when the video started. The other one simulates to be a lecturer. 
 
Complexity Factors:  
 

I.Several objects interact in a real video; they produce shadows over the floor and 
the wall. 
 

II. Scene is illuminated by fluorescents, their influence results in reflectance areas 
distributed along the frame.  
 

III. Two of the people present in the video wear clothes with colors similar to some 
areas in the background. 
 

IV.People interact among them, so that precise segmentation masks are needed to 
correctly detect those interactions in a higher semantic level. 
 

Illustrative frames:  
 

System performance in shadows elimination can be observed in every frame presented 
in Figure 8. Additionally, boundary refinement is clearly shown in frames 170 and 473. 
However, in frame 763, even most of the objects extracted boundaries are more adjusted 
to real ones, there are some background areas that are added to the foreground (as those 
surrounding the girl sitting in left side of the scene). The point is that these areas are 
whole regions that suffer iterative activation and deactivation along the video, 
consequently tracking scheme process described in VI4 seems to be a powerful tool to 
eliminate this system inaccuracies. 
 
   



Chapter 7 – Results 

 43 

Frame 
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Figure 8. Some illustrative frames from region based segmentation of C0_UPC .avi 
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► Second sequence. 
 
Name: PETS06_S7-T6-B_3_abandoned_object_4cif.avi 

 
Description:  
 
Static view of a train station hall where people walk trough, stop, occludes other people, 
leave objects unattended and run. Available at:  pets2006.net/ 
 
Complexity Factors:  
 

I. Several objects interact in a real video; they produce long shadows over the floor 
and the wall. 

 
II.   Scene is illuminated by fluorescents, their influence results in reflectance areas 

distributed along the frame.  
 

III.  A person remains static for a long time, enough to be considered as background 
if any tracking system is used. 

 
IV.  People interact among them, precise pixels segmentation masks are needed to 

correctly detect those interactions in a higher semantic level. 
 
 
Illustrative frames:  
 
System performance in shadows elimination is again depicted in Figure 9. Additionally, 
objects boundary refinement and hole-filling is carried out in frames 264 and 314. 
Reflects produced by crystal panels are eliminated in frame 469, but they are not in 
fame 314, probably background model has not been robustly updated with this new 
region configuration yet. 
 
Observe the grey region appearing at the down-right corner of the frame 314. Ideally, 
this region should be merged with the rest of the floor, but as explained in section 
IV.3.b, designed Mean Shift segmentation can not handle very umbra-specially dark- 
areas where reflectance information has been strongly occluded by light absence. 
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Figure 9.  Frames from region based segmentation of  PETS06_S7-T6-B_3.avi 
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3 Quantitative Results 
 
There are several quality parameters to measure the performance of an element binary 
classification system, where a class is consider as positive (‘1’) and the other class as 
negative (‘0’). However, most of them are ratios of four parameters that can be 
extracted from an element wise comparison between obtained classification and a 
‘perfect classification’. These parameters are; the number of elements correctly 
classified for each class (also called true positives TP and true negatives TN ) and the 
number of elements incorrectly classified as members of the other class (false positives 
FP  and false negativesFN ). 
 
Dealing with video segmentation, the elements to classify are the pixels, the classes are 
foreground (‘1’) and background (‘0’), and the perfect classification is usually called a 
Ground-truth.   
 
The different measures we are going to evaluate for each video are the following: 
 
� Sensitivity [ RLT 1]  or true positive rate (S). Measures the proportion of existing 
positive elements that are correctly identified as such. It can be computed by the 
formulae: 
 

TP
S

TP FN
=

+              (17) 

  
, sometimes it is also called positives Recall rate. In pixel-level video segmentation, 
sensitivity represents the proportion of total foreground pixels correctly segmented. 
 
� Specificity [ RLT 1]  or true negatives rate (E). Measures the proportion of existing 

negative elements that are correctly identify as negative by the classification system. It 
is common to compute 1-E, that respond to the formulae: 

 
TN

1- E 1
TN FP

= −
+              (18) 

 
, sometimes E is also called negatives Recall rate. In pixel-level video segmentation, 
specificity represents the number of total background pixels correctly discriminated as 
such background. 

 
� Positive precision [RLT 2]  (P_F). Measures the proportion of elements classified as 

positives that are correctly identified as such. In the context of our problem, the 
number of pixels classified as foreground that are really part of the foreground: 

  

_
TP

P F 1
TP FP

= −
+

             (19) 

 
 

� Negative precision [RLT 2]  (P_B). Measures the proportion of elements correctly 
classified as negative from the total of elements identified as members of this class. 
That is, the proportion of pixels classified as background that are not foreground. 
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_
TN

P B 1
TN FN

= −
+              (20) 

 
� Positive F1 Score [RLT 3]  (FS_F).  Is a measure that combines P_F and S to provide a 

global idea of the system performance in detecting positive elements, in our context, 
foreground pixel. Positive F1 Score best value is 1 and worst 0. We use the traditional 
definition of F1 score, that is: 

 
_

_
_

P F S
FS F 2

P F S

 ×= × + 
            (21) 

 
� Negative F1 Score [RLT 3]  (FS_B). Can be considered as measure that combines P_N 

and E to provide a global idea of the system performance when detecting negative 
elements. Negative F1 Score best value is 1 and worst 0. We have used again the 
traditional definition of F1 score, that is: 

 
_

_
_

P N E
FS B 2

P N E

 ×= × + 
            (22) 

 
Tested videos with ground-truth have been extracted from the public databases 
available at [RLT 4]. These videos have been artificially generated and thus they are 
shadow free; so comparison has just been made in a sequence where multimodality was 
present, in order to show the effectiveness of our multilayer background modelling.  
 
 
► Third sequence. 
 
Name: VSSN06-video4 

 
Description:  
 
The video presents a fixed scene of a house yard with a high amount of vegetation 
which leaves and flowers are constantly moving with the wind. 
 
Complexity Factors:  
 

I.  Background multimodality 
 
Illustrative frames:  
 
Basically, results show that our algorithm is robust to the presence of moving elements 
typical form multimodality backgrounds, and State of the art algorithm is not. 
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Frame 
Number 

30 452 570 

 
 

Original 
Frame 

 
 

  
 

 
 
 

State of Art 
approach  

 
  

 
Mean Shift 

Region 
Segmentation 

   
 

 
 
Implemented 

Approach 

 
 

 
 

 

 
Figure 10.  Frames from region based segmentation of VSSN06-video4.avi 

 
 
Quantitative evaluation: 
 

Quantitative 
Measure 

S 1-E P_B P_F FS_B FS_F FS 

State of Art 
approach 

6.03 
% 

40.67 
% 

98.69 
% 

0.377 
% 

0.007 0.734 0.741 

Implemented 
Approach 

77.0 
% 

0.89 
% 

99.41 
% 

68.73 
% 

0.993 0.7263 1.719 

 
Table 4 Quantitative evaluation of VSSN06-video4.avi 

 
 
Although our algorithm requires a higher initialization time to get robust foreground 
models, Figures Figure 11, Figure 12, Figure 13 and Figure 14 show that, its 
performance is better than the state-of-the-art approach for every quantitative measure 
computed. 
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Figure 11.  True Positives percentage comparison (VSSN06-video4.avi) 
 
 

 
 

 
 

 
Figure 12.  False Positives percentage comparison (VSSN06-video4.avi) 

 
 
 

 
 
 
 

Figure 13.  True Negatives  percentage comparison (VSSN06-video4.avi) 
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Figure 14.  False Negatives  percentage comparison (VSSN06-video4.avi) 
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VIII  Chapter 8- Future Work and Conclusions 
 
This chapter introduces future work required or suggested over the developed system. 
To organize it, we will divide future work in two areas, system opportunities and system 
limitations.  
 
Systems opportunities refer to future work that may improve results, or make use of the 
presented system nature and results to perform video analysis at a higher semantic level.  
On the other hand, system limitations refers to developments that should be undertaken 
as soon as possible to allow video analysis systems to make use of this work and its 
advantages in real video analysis environments.  

1 System opportunities 
 
The most relevant future work required in this area is the use of the connected-
component tracking described in section VI4 to improve the segmentation mask and, by 
extension, the system performance. Preliminary results of this module indicate that its 
integration in the system can refine final results and enhance system robustness. 
 
Each region in the model is well characterized, and, at the same time, a set of those 
regions characterize each connected-component in the scene. Region characterization is 
quite flexible in the presented approach, so that alternative or complementary features 
can be used to model the scene without changing the system nature and philosophy. It 
would be of main interest to include textured based features in the region 
characterization. 
 
Once we account for region and connected-component characterization, there is a wide 
range of extensions to the developed work. Modelled regions can be used to identify 
objects, which are, essentially, characterized connected-components. Obtained object 
based descriptions are potentially robust to perform typical high level analysis tasks 
which include, but are not limited to, object recognition, human detection, object-human 
interactivity and human activity recognition.   
 

2 System limitations  
 
Chapter VII does not provide indications on the system temporal efficiency or on 
computational costs, as the presented implementation is quite resource demanding 
(reaching several seconds per frame in the worst case), which is the main limitation of 
the system. 
 
Even though a lot of effort has been made in code optimization, there are several bottle 
neck processes in the system which are consuming most of the processing time.   
 
Heaviest processes relate to operations that require image inspection at pixel level, 
instead of at region level. These are operations are just those involved in region 
characterization: 
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i. Mean-Shift segmentation. 
 

ii.  Geodesic Center Estimation. 
 
iii.  Region neighbours searching. 

 
Mean-Shift iteratively searches for convergence inside a window, centred in a particular 
pixel, and checks every pixel status in its clustering phase. Geodesic center is also a 
pixel, and iterative erosion process; even computed with the distance transform is a very 
heavy process if we compute it in highly textured areas where many regions are 
segmented. Finally, region neighbours searching requires also the extraction of the 
furthest pixel in the region at each searching angle. 
 
These three processes are performed independently among them, consuming, in 
foreground absence, more than 90 % of the computational time. However, an 
approximated estimation of the geodesic center position and identifiers for each of the 
8-connected neighbouring regions are directly available at Mean-Shift segmentation 
process core. Thus, region characterization can be done in a faster way. 
 
Furthermore, as this process does not require any result from previous frame region 
segmentation, it can be performed in parallel to the region discrimination system 
explained in chapters V and VI. 
 

3 Conclusions 
 
We have designed, implemented and presented an automatic region-based segmentation 
system for video sequences recorded by fixed cameras. First a robust low level 
segmentation approach is used to identify potential foreground areas; in parallel, a 
region segmentation process robust to light artefacts is performed via a new Mean-shift 
implementation. The region segmentation and the pixel-level segmentation mask is 
combined to achieve region level analysis. 
 
In foreground absence, confirmed background regions are used to build a background 
model characterized with the covariance matrix of each region accumulated features. 
Once the model is built, candidate background regions are assessed by matching them 
to regions in the modelled background, via a static region tracking driven by the 
evolution of the covariance matrix.  
 
Foreground is extracted from potential foreground and discriminated from background 
by executing a hypothesis test. This test the hypothesis of a potential foreground region 
belonging to either the foreground or the background region model, and is also driven 
by modelled region covariance matrix evolution. Indirectly, this test performs a region 
tracking.  
 
Region level segmentation results are used to update the background model of the pixel-
level segmentation approach, thus performing an up to down information feedback 
scheme. 
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Finally, an approach to extend this region tracking to classical connected component 
tracking has been designed, inspired in state of art, implemented but not fully tested. 
 
Concluding, we have designed and implemented an automatic and innovative region 
segmentation technique, we have robustly categorized and tracked such segmented 
regions and we have used final results to feed pixel-level segmentation. Results show 
that the combination of these processes results in a better segmentation mask, and that 
the feedback process efficiently improves pixel-level segmentation approach by 
avoiding the influence of this failure factors in background updating strategy. 
Consequently, we have fulfilled every initial objective.  
 
System performance in segmenting objects seems to be, in the light of included results, 
better than state of art approach, as state of art approach is a combination of classical 
pixel segmentation techniques and its segmentation results are showed to be better [SEG 
29] than them, we can transitively derive that presented system performance is better 
than classical pixel-level algorithm. However, an exhaustive studio with a higher 
amount of sequences is required to fully support this initial observations.    
 
Finally, the main drawback of the system is its high processing time per frame, which 
turn its integration into a higher semantic analysis system inapplicable at present day; 
we would focus future work in this line, and with the aim to avoid this limitation as 
soon as possible. 
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