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Resumen

Los modelos de odometŕıa visual y estimación de profundidad monocular han ido
tomando más presencia en el campo de la visión por computador recientemente. Exis-
ten muchos métodos de aprendizaje profundo autosupervisado dedicados a estas tareas
que consiguen resultados competitivos con modelos supervisados. Sin embargo, dichos
métodos tienden a rendir por debajo de lo esperado cuando se trata de generalizar a
secuencias tomadas por nuevas cámaras.

Por un lado, uno de los principales retos para la generalización de cámaras no vistas
es la ausencia de un conjunto de datos adecuado que permita realizar comparaciones
justas entre secuencias idénticas tomadas por diferentes cámaras. Para abordar este
problema, hemos creado un conjunto de datos personalizado utilizando el simulador
CARLA [1]. Este conjunto de datos consta de tres secuencias de v́ıdeo diferentes, cada
una capturada por 5 cámaras con distancias focales distintas.

Por otro lado, proponemos una arquitectura que utiliza aprendizaje adversario para
que el modelo sea invariante a los cambios en los parámetros internos de la cámara.
De este modo, podemos estimar la profundidad y la pose independientemente de la
cámara utilizada para grabar la secuencia.

Los resultados obtenidos con la arquitectura propuesta se comparan con los pro-
porcionados por una de referencia. Además, también se ha realizado un proceso de
evaluación del efecto de aprendizaje adversario, demostrando aśı las ganancias poten-
ciales de nuestro enfoque.

Espećıficamente, este proyecto explora la mejora de modelos actuales de estimación
monocular autosupervisada de profundidad y odometŕıa visual incrementando su ro-
bustez ante cambios en los parámetros de calibración de la cámara mediante aprendizaje
adversario.

Palabras clave

Odometŕıa visual, Estimación monocular de profundidad, Visión por computador, Au-
tosupervisado, Aprendizaje profundo, Simulador CARLA, Entrenamiento adversario,
Generalización.
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Abstract

Visual odometry and monocular depth estimation models have been taking more pres-
ence in the computer vision field recently. There are many self-supervised deep learning
methods devoted to these tasks that achieve state-of-the-art results. However, they
tend to underperform when it comes to generalize to sequences taken by new cameras.

On the one hand, one of the major challenges for unseen camera generalization
is the absence of a suitable dataset that enables fair comparisons between identical
sequences taken by different cameras. To address this problem, we have created a
custom dataset using the CARLA simulator [1]. This dataset comprises three different
video sequences, each one captured by 5 specific cameras of diverse focal distances.

On the other hand, we propose an approach that makes use of adversarial training
in order to make the model invariant to changes within the internal camera parameters.
Hence, we enable depth and pose estimation independently from the camera used to
record the sequence.

The results obtained using the proposed architecture are compared to those achieved
by a baseline one. Moreover, it has also been performed an evaluation process of the
adversarial learning effect, therefore demonstrating the potential gains of our approach.

Specifically, this project explores the improvement of actual self-supervised monoc-
ular depth estimation and visual odometry models by increasing their robustness under
changes in the camera calibration parameters through adversarial training.

Keywords

Visual odometry, Monocular depth estimation, Computer vision, Self-Supervised, Deep
Learning, CARLA Simulator, Adversarial training, Generalization
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Chapter 1

Introduction

In this chapter, the problem addressed in this project will be presented. In addition,
it will be justified its relevance and motivation, establishing main and secondary ob-
jectives. Finally, the structure of the thesis report will be explained.

1.1 Motivation

Three-dimensional reconstruction of scenes from two-dimensional images is a funda-
mental task in the computer vision field. It is useful in many areas, such as autonomous
driving, aerospace and computational medicine. Traditional methods address this task
fundamentally using multiview techniques through epipolar geometry or feature match-
ing. However, these approaches have a major limitation in that they assume that the
objects in the scene are rigid, which does not take into account the possibility of elastic
or deformable objects. In addition, these methods require careful tuning and cannot
recover dense depth maps.

Deep learning is considered as a promising solution to overcome these limitations.
However, it requires training on very large datasets. To ease this, self-supervised deep
learning can be used, as it is able to generate a supervisory signal from unlabeled data
by exploiting the underlying structure on it. This methods either accept multiple views
of a scene (multi-view), stereo or a single view (monocular).

In addition, these methods can be trained solely with monocular RGB unlabeled
sequences, as shown in Figure 1.1. When available, reference depth maps acquired
with LIDAR or other depth sensors might be used to evaluate monocular estimation
performance. On the other hand, odometry performance is assessed by comparison
with GNSS/IMU measurements.

Nevertheless, self-supervised deep learning models for depth estimation show often
dependency to the intrinsic calibration parameters of the camera used during training,
leading to a degradation of the results when applied to sequences recorded with different
cameras.

There is a need to make these methods invariant to camera changes. Therefore,
we propose to investigate the use of adversarial learning to increase its generalisation
ability to different cameras. In this way, we enable more robust and accurate 3D

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Self-supervised Monocular Depth Estimation and Visual Odometry.

reconstruction in diverse scenarios, thus improving one of the main limitations of self-
supervised deep learning models in this task.

This research line, focused on the inclusion of adversarial training in self-supervised
depth estimation models began in the 2021-2022 academic year in the VPU Lab [2].
However, in this project, a continuation of that study is carried out by also introducing
visual odometry extraction and further evaluation. Furthermore, this time more exper-
iments have been carried out and a larger dataset has been generated with increased
realism.

1.2 Goals

The main objective of this project is to design and implement a self-supervised deep
learning model capable of estimating both the depth of each image belonging to a video
sequence and its trajectory, showing robustness to changes in the intrinsic calibration
parameters of the camera through adversarial learning.

The secondary objectives are the following:

• Develop knowledge in the area by studying and analyzing the limitations of the
state-of-the-art.

• Create a custom dataset that contains different realistic sequences and enables
fair comparisons of the same sequence captured by various cameras.

• Demonstrate the effect that changes in the Field Of View (FOV) have on the
performance of a baseline model.

• Evaluate the proposed arquitecture in terms of depth and odometry estimation
and compare the results with the ones obtained by a baseline arquitecture.

1.3 Report Structure

This report is structured in 6 chapters.

Chapter 1 introduces the motivation of the thesis and its context. It also includes
the main objective and the secondary objectives.
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On the other hand, Chapter 2 consists of a detailed explanation of the theoretical
background that forms the basis of the thesis. Thus, this chapter explains in detail
the problem we are dealing with, the different solutions that are currently available to
solve it and the main limitations of each one. Moreover, it includes the mathematical
fundamentals on which these methods are based.

In Chapter 3, we explain the architecture we are going to use as a reference one
(Baseline) and the difference with the one that we have proposed by introducing ad-
versarial learning to it.

Chapter 4 describes the structure of the created dataset, providing examples of
images contained in it. In addition, we include a brief explanation of the simulator
used for its generation.

Chapter 5 includes the explanation of the metrics used to evaluate the proposed
architecture, the experimental procedure that will be carried out throughout the project
and the results obtained in each of the experiments.

Finally, Chapter 6 is based on the conclusions obtained after finishing the thesis
and in view of the results obtained, as well as showing possible future work in this
area.
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Chapter 2

Theoretical Background

Throughout this chapter we will explain the concept of self-supervised monocular depth
estimation and how visual odometry is obtained from it. Moreover, we will expose
the main assumptions of this type of methods and the limitations implied by each
of them. Then, a theoretical background will be provided in which we will describe
multiple approaches to solve the described limitations. Finally, it will be expanded the
framework in which this project is focused.

We are going to follow the flowchart showed in Figure 2.1.

Figure 2.1: Structure of Chapter 2 flowchart. Adversarial training is the proposed
architecture of the thesis.

5



6 CHAPTER 2. THEORETICAL BACKGROUND

2.1 Self-supervised Monocular Depth estimation and

Visual Odometry

2.1.1 Self-supervised Monocular Depth estimation

To correctly understand what self-supervised monocular depth estimation is, it is nec-
essary to understand each of the terms that make up its name. The word ‘monocular’
refers to the fact that the images that are available for us have been captured by a
single camera. On the other hand, the term ‘self-supervised’ implies that we are using
a learning approach where we obtain supervisory signals from the data itself. Finally,
the concept of ‘depth estimation’ defines the process of generating depth maps from an
input image. Thus, self-supervised monocular depth estimation is an advanced tech-
nique in the field of computer vision and deep learning that allows depth inference at
the pixel level in images captured by a single camera without the need of annotations.

Traditional methods primarily use epipolar geometry for depth estimation. This is
based on the geometry of the cameras and establishes the relationship between images
captured by different cameras or at different times. Thus, they use the fundamental
matrix and the projection matrix in order to calculate the stereo disparity between
the cameras and estimate the depth. In addition, the epipolar constraint defines point
correspondences between the images, which helps in accurate depth estimation.

Nevertheless, an important limitation of traditional approaches is that they require
additional information such as multiple stereo views or depth sensors. Alternatively,
self-supervised monocular depth estimation uses deep learning techniques to infer depth
from single images without the need of explicit annotations. To this end, deep convolu-
tional neural networks (CNN) are employed to learn the relationship between the input
images and their corresponding depth. These models are trained in a self-supervised
manner, comparing each image with its reconstruction and taking that difference as the
supervisory signal. It is important to mention that the reconstruction of each frame is
computed by combining the parameters of the camera model together with the depth
and pose estimation.

Camera models are described by intrinsic (focal length, optical centre) and extrinsic
(camera position and orientation) characteristics. These models allow points in three-
dimensional space to be related to their projections on images, which is crucial for
accurate depth estimation.

In this context, different loss functions are used to evaluate the discrepancy between
the reconstructed image and the original one. These loss functions play a crucial role in
the training of the CNN. Some of the common loss functions include L1 loss [3], which
measures the absolute difference between the estimate and the actual depth value, and
structural similarity loss (SSIM) [4], which evaluates the structural similarity between
the reconstructed image and the original image. In addition, custom loss functions can
be designed to suit the specific characteristics of the depth estimation problem.
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2.1.2 Visual Odometry

The term ‘visual odometry’ refers to the process of incrementally estimating the posi-
tion and orientation of a vehicle from images captured with an on-board camera. This
information is essential in autonomous navigation applications and motion tracking
systems. There are multiple methods to solve this task, which can be based on visual
features [5], point of interest tracking [6] or pixel matching across frames [7].

In the context of self-supervised monocular depth estimation, visual odometry can
be extracted as a part of the process [8]. This is achieved by incorporating into the deep
learning model a network devoted to pose prediction, that is responsible of estimating
changes in camera position and orientation between successive frames. By jointly
training the depth estimation network and the visual odometry one, cross-feedback
between the two tasks is achieved.

The monocular depth estimation process provides information about the scene
structure and the three-dimensional geometry of the objects present in the image.
Depth estimation is performed on the image points. Concurrently, the pose estimation
network yields estimations of the camera’s relative position and orientation in relation
to those points. These pose estimations are subsequently used to continually update
the vehicle’s trajectory as new images are acquired.

2.1.3 Overall Method

As explained in Section 2.1.2, self-supervised monocular depth estimation methods
include a network dedicated to pose estimation, from which the visual odometry task
is performed.

Although the relationship between both networks is explained in detail in Chapter
3, in order to make this chapter self-contained, it should be noted that the learning
process in these methods is based on the estimation of a target frame It from a source
frame Is (adjacent to the target one), by the following equation [8]:

ps = KTt−→sDt(pt)K
−1pt, (2.1)

where ps and pt are a pixel of Is and It respectively, Dt is the estimated depth for
It, Tt−→s is the pose change between both frames and K is the calibration matrix of
the camera used to capture the sequence.

From Equation 2.1, pt is projected in the 3D world with K−1 and scaled through
Dt. Then, we use Tt−→s to transform the pixel to the source position. Finally, we use
K to project it back to the camera, thus obtaining the source pixel, ps.

Therefore, since self-supervised monocular depth estimation models use K in their
learning algorithm, they tend to generate dependence on these intrinsic parameters
of the camera that has recorded the sequence, hence hindering their applicability in
environments with different cameras.
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2.2 Restrictions of existing methods

Self-supervised monocular depth estimation improves over limitations of traditional
methods. However, it is important to note that they also present certain restrictions
that can be classified into three main categories: scale, image reconstruction and cam-
era model.

Firstly, as for the image reconstruction constraints, the self-supervised monocular
depth estimations assume that the scene is static, i.e. no moving objects are present.
Thus, the reconstruction relies on all pixels moving relative to the ego-motion of the
camera device. This assumption simplifies the depth estimation process, but can be
limiting in dynamic scenes or scenes with multiple moving objects. In addition, these
methods may have difficulties dealing with occlusion, as the synthetic monitoring in-
formation may not accurately reflect the occluded regions in the real image.

In addition, consistency of scale between the predicted depth and the camera pose
is assumed. This is necessary to avoid having infinite combinations of initial depth
and translation vector resulting in the exact solution for the relative distances. This
constraint allows for a consistent relationship between depth scale and camera move-
ment, which is essential for accurate results. However, scale is inherently ambiguous
in a single image, which implies a major challenge.

Finally, it is assumed that the intrinsic parameters of the camera remain constant
both during training and test phases. This constraint implies that, among other pa-
rameters, the calibration matrix of the camera will remain unchanged. It is important
to note that this constraint is based on the assumption that assumes a fixed camera.
However, in real situations, it may be difficult to keep the intrinsic parameters constant,
which limits the applicability of these methods in practical contexts.

2.2.1 Reconstruction of the image

The problem of image reconstruction in monocular depth estimation presents additional
challenges when faced with real-world scenes. In these scenes, it is difficult to find
perfect scenes where there are no occlusions and the assumptions of static scenes are
met, especially in urban environments where many existing objects exhibit different
movements relative to the camera movement.

A common approach is to exclude incomprehensible regions for camera ego-motion.
Therefore, a possible solution remains on the idea of using an architecture that has a
combined pose-explainability network retrieving both the camera pose between frames
and a mask that has information on unexplainable pixels [9].

Another solution for addressing this is based on the use of optical flow to mask
areas of the image that break the ego-motion assumption through the measurement of
the consistency of forward and backward optical flow between two frames [10, 11, 12].

Alternatively, a loss term can be included that takes occlusions into account [13].
This loss term uses the measurement of depth differences for corresponding points.
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This can be combined with the classification of objects as ”possibly moving” or ”static”
through semantic information [14], subsequently masking the moving area in the loss
calculation.

Other approaches focus on calculating a mask based on the distribution of the
image reconstruction loss along with a weak supervision based on the estimation of the
epipolar geometry [15]. Finally, it is possible to use depth to generate three-dimensional
clouds and then construct depth alignments for supervision [8].

In general, these approaches seek to address the image reconstruction problem in
monocular depth estimation by accounting for factors such as occlusions and motion
consistency. By using masks, adaptive loss and techniques based on epipolar geometry,
they attempt to improve the quality of image reconstruction and obtain more accurate
depth estimates in real-world scenarios.

2.2.2 Scale assumptions

The problem of scale assumptions in depth estimation is a major challenge in this
field. There is a scale ambiguity between the predicted depth and the camera pose.
For example, some detected objects may be small and close to the camera, or conversely,
they may be large objects and far away from the camera.

The problem lies in the infinite possible combinations between the initial depth
and the translation vector that provide the exact solution for the endpoint. During
training, the pose and depth estimation networks reach a scale factor that helps to
provide meaningful results. Thus, several attempts have been made to ensure scaling
consistency during training.

One of the proposed solutions is based on minimising the loss defined as the dif-
ference between the target depth and the source depth warped to the target frame
[16]. Through this technique, an attempt is made to guarantee geometric consistency.
Alternatively, it can be addressed by using inverse depth terms [17] or even by directly
aligning depth estimations with sparse depth points [18].

These approaches seek to address the problem of scale ambiguity and improve the
accuracy of depth estimation. However, it is important to note that these approaches
may introduce additional limitations and dependencies on the input data, such as the
need for sparse depth points or source depth information.

2.2.3 Camera assumptions

In the field of depth estimation, one of the most common restrictions is the assumption
that the intrinsic camera parameters remain constant across sequences. While this is
usually true in controlled environments, it often leads to a decrease in the generalization
capability of the model in the test phase when using a different camera model.

This restriction can be addressed by adding an up-to-scale loss function and a new
layer in the learning architecture that explicitly adds intrinsic camera information to
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the images [19]. Hence, information such as the calibration matrix is incorporated
directly into the learning model. This allows the model to better learn and generalise
to different camera configurations.

Epipolar geometry can also be used to estimate camera rotation and translation
from point correspondences [16] [18]. Epipolar geometry provides a relationship be-
tween images captured by two different cameras and is used to estimate the camera
pose. These methods use specific algorithms, such as the fundamental matrix decom-
position, to solve the pose estimation.

It has been explored the design of a neural network combining the perspective-n-
point problem (PnP) and the fundamental matrix decomposition [20]. By combining
different techniques, it aims to improve the accuracy of camera pose estimation and
overcome the limitations of traditional methods. This approach is especially useful
in cases where significant camera translations result in degenerate epipolar solutions,
i.e. solutions with poor generation of the lines formed by the correspondences between
points in two different views.

The focus of this experiment is specifically on this particular constraint. An attempt
is made to solve the problem by proposing an invariant architecture to the camera
model. This means that the model is able to learn and generalise to different camera
configurations without the need to know the specific intrinsic parameters. In doing so,
the aim is to improve the model’s ability to adapt to various situations and to achieve
more accurate and generalisable depth estimates.

2.3 State of the art addressing camera assumptions

In the field of monocular depth estimation, there are several state-of-the-art strategies
for dealing with camera assumptions.

One option is to explicitly incorporate camera information into the learning archi-
tecture, considering intrinsic parameters such as the calibration matrix and distortion
coefficients. Alternatively, continuous learning is being investigated to adapt the model
to new conditions and changes in image capture. Furthermore, multi-view geometry
fusion and deep learning are also used to improve the accuracy of depth estimates
by exploiting the spatial structure of the scene and the correspondence between im-
ages. Finally, combining diverse datasets allows addressing the limitations of camera
assumptions by training and evaluating the model under different conditions to obtain
more accurate and robust estimates.

These strategies seek to improve the quality and reliability of depth estimates by
more fully considering camera characteristics and scene geometry.

2.3.1 Adding Camera Information Explicitly

One of the strategies used to address camera assumptions in self-supervised monocular
depth estimation methods is by explicitly incorporating camera information. There
are two levels where it can be done: data and architecture level.
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Data Level

At the data level, there is an important approach to address the limitations of vi-
sual odometry models: TartanVO [19], which is a learning-based model that seeks to
generalise across multiple datasets. Visual odometry models often face two common
problems: lack of training with diverse data and the omission of fundamental theories
of geometry-based visual odometry, such as scale ambiguity. To overcome these chal-
lenges, TartanVO uses a synthetic and diverse dataset called TartanAir [21] during the
training process. By using synthetic data, the model can face challenging scenes and
learn from a wide range of situations.

However, since TartanAir only provides a set of intrinsic camera parameters, addi-
tional parameters are simulated using data augmentation techniques such as resizing
and random clipping. The model uses a pre-trained network called PWC-Net [22] and
a modified version of ResNet50 [23]. In addition, TartanVO proposes a loss function
that explicitly addresses scale ambiguity and adds information about the intrinsic data.
Through extensive experiments, the model demonstrates its ability to generalise to pre-
viously unseen data. Although it outperforms geometry-based methods, it is important
to note that this model still requires the inclusion of intrinsic data to work.

Architecture Level

Architectural changes to neural networks have been proposed to explicitly incorporate
camera information. A relevant example is the Camera-Aware Multi-scale Convolutions
(CAMConvs) method [24]. It proposes a new type of convolution that considers camera
parameters such as the calibration matrix and distortion coefficients.

CAMConvs allows the network to learn patterns sensitive to the camera calibration,
which improves the consistency and accuracy of depth estimations. The main idea be-
hind CAMConvs is to recognise that different regions of an image may require different
filters due to the particular geometry. Instead of applying standard convolutions to
all regions of the input image, CAMConvs adapts the convolution filters according to
the camera parameters. This allows the network to more effectively capture camera-
specific spatial and structural relationships, resulting in more accurate and consistent
depth estimations.

In addition to multi-scale convolutions, CAMConvs can incorporate camera infor-
mation into other layers of the neural network. For example, attention layers can be
added that weight the importance of different features based on camera calibration.
These layers allow the network to focus on relevant regions, thus improving the quality
of depth estimates.

They mainly experiment using the 2D-3D Semantic dataset [25], which allowed them
to generate images with the same content but with different camera intrinsics. The
results confirmed that CAMConvs outperforms the state of the art and demonstrates
robust generalisation in terms of camera intrinsics, unseen sensor sizes and unseen
cameras. However, this method has only been applied in supervised depth estimation.
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2.3.2 Continuous Learning

Continuous learning is based on the idea of constantly updating and adapting the model
as new data is collected, allowing the system to adjust to changing capture conditions
and overcome the limitations of static camera assumptions.

A relevant study in this context is the online adaptation framework for deep visual
odometry proposed in [26]. This approach describes a model that incorporates Bayesian
inference and scene-independent geometric computations. The model consists of two
main branches: FlowNet and DepthNet.

The FlowNet branch is responsible for estimating the optical flow between two
consecutive frames. It studies how objects and features in the scene move between
frames, which provides information about the relative motion of the camera and objects
in the scene. This optical flow estimation is fundamental to understanding the change
in camera perspective and allows the model to be dynamically updated as new frames
are captured.

On the other hand, the DepthNet branch is responsible for estimating the depth
of the scene from the input frames. It uses deep learning techniques to infer depth
information based on the relationship between the image pixels and the features learned
by the neural network. The triangulated depth patches improve the initial depth during
an online adaptation.

Finally, the pose and optimized depth are the pseudo ground-truth for self-supervision
during online learning of DepthNet and FlowNet. Even though it enables fast adapta-
tion of visual odometry networks to unseen scenes, it requires an online optimization
and hardware to support that.

In summary, the continuous learning approach is based on the idea that the model
updates and adapts as new data is captured. This allows the system to adjust to
changes in capture conditions, such as variations in lighting, the appearance of moving
objects or changes in camera settings. By incorporating new data and periodically
updating the model, the system becomes more robust and able to cope with static
camera assumptions. The incorporation of Bayesian inference, geometric calculations
and the use of branches such as FlowNet and DepthNet improves the system’s ability
to overcome the limitations of static camera assumptions and obtain more accurate
and reliable depth estimates.

2.3.3 Fusion of Multi-View Geometry and Deep Learning

This approach combines the spatial structure of the scene obtained from multiple im-
ages with the deep learning capabilities of neural networks to improve the robustness
and accuracy of depth estimates.

The main idea behind the fusion of multi-view geometry and deep learning is to
leverage information obtained from different viewpoints of the scene to obtain more ac-
curate and consistent depth estimates independently of the camera. By using multiple
images, a more complete view of the scene can be captured, which helps overcome the
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limitations of single image information and static camera assumptions. In this way,
it is possible to determine correspondences between points in different views, estimate
the fundamental matrix that describes the relationship between images, and calculate
the projection matrix that relates 3D points in the real world to their projection in the
images.

In [27], the challenge of camera variability in estimating 3D geometry from im-
ages is comprehensively addressed. In this context, the proposed approach combines
deep learning techniques with classical multi-view geometry methods to address the
inconsistency that can arise due to differences in camera configurations.

One of the main achievements of the paper is the elimination of the dependence of
the learning model on camera-specific parameters. To this end, the authors propose to
use traditional multi-view geometry methods to resolve this issue. Specifically, a two-
view triangulation module is employed which, by combining information from different
images, achieves a three-dimensional structure with an appropriate scale.

A key feature of this approach is that the entire system can be trained in an end-
to-end manner, allowing end-to-end learning to take place. This means that the model
learns to infer the 3D geometry and fuse it with the input images together, thus im-
proving the consistency and accuracy of the estimates.

Experimental results obtained by evaluating the proposed approach using the KITTI
dataset [28] demonstrate significant improvements in the generalisation capability of
the model. Furthermore, its outstanding performance in self-supervised models is high-
lighted, achieving state-of-the-art results in this type of approaches.

However, it is important to mention that this method may present certain limita-
tions and be prone to failure in certain situations. One of the possible sources of error
lies in the estimation of the fundamental matrix, which can be affected by noise in the
data. It should also be noted that this approach is not applicable in situations of pure
rotations and requires the availability of the camera matrix for its correct operation.

2.3.4 Mixture of Datasets

Mixture of Datasets is a strategy used in monocular depth estimation that seeks to
address camera assumptions by combining diverse datasets. This technique is primarily
based on two approaches: multi-objective learning and adversarial training.

Multi-objective Learning

First, multi-objective learning is a technique that involves training the model using
multiple targets or training criteria. In the context of depth estimation, this involves
using different datasets that exhibit variations in capture conditions, such as illumi-
nation, object motion and scene geometry. By combining these datasets, the model
benefits from greater diversity and generalisation, which helps to overcome camera
assumptions and obtain more accurate and robust depth estimates.
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A relevant approach to address the challenge of monocular depth estimation in
diverse scenarios through multi-objective learning is [29]. In this method, data from
different sources are combined, even when they have incompatible annotations. By
combining these data in an intelligent way, the model can learn more robust patterns
and features, thus improving the quality and accuracy of depth estimates.

One of the key features of this model is its invariance to depth range and scale, which
means that it can generalise and estimate depth accurately across different ranges and
scales of scenes. To achieve this, it is used a training dataset consisting of six diverse
datasets, each of which has unique and challenging characteristics. In addition, a
comprehensive evaluation is performed on a previously unseen dataset, allowing the
model’s generalisability and performance in new situations to be measured.

Furthermore, the importance of pre-training encoders on complementary tasks be-
fore applying multi-objective learning is emphasised. This pre-training approach allows
capturing general features and useful representations that benefit the subsequent depth
estimation process.

Experimental results show that, after being trained with five different datasets and
evaluated with a different one, the model is able to perform more accurate and reliable
depth estimation compared to other approaches. However, it is important to note that
this model has been evaluated and applied exclusively in the context of supervised depth
estimation, which means that its performance in other scenarios or with unsupervised
data may require further investigation.

Adversarial Training

In order to achieve robust depth estimation in the face of changes in the intrinsic
parameters of the camera, the use of adversarial training has been proposed.

In the context of adversarial training, a discriminator is introduced that aims to
estimate which camera has recorded each video frame or sequence from a set of possible
cameras. The discriminator is trained to distinguish between the frames generated by
the model and the actual frames recorded by different cameras. Its function is to learn
to identify the specific characteristics and patterns of each camera.

On the other hand, a CNN acts as a generator, taking care of extracting features
from which it is possible to generate depth estimates that are robust and generalisable
across different cameras. During training, the generator is confronted with the discrim-
inator, and its goal is to trick the discriminator so that it cannot distinguish between
the generated estimates and the actual depths recorded by different cameras. As the
generator improves its ability to generate indistinguishable depth estimates, greater
robustness to changes in intrinsic camera parameters is achieved.

The adversarial training process involves the joint optimisation of the generator
and the discriminator. The loss of the discriminator is defined to maximise its ability
to correctly identify the source chamber, while the loss of the generator is defined
adversarially, seeking to minimise the discriminator’s ability to distinguish between
generated estimates and true depths.
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This adversarial training approach allows the generator to learn relevant features
and patterns that are invariant to the intrinsic parameters of the camera. By introduc-
ing competition between the generator and the discriminator, the generator becomes
more aware of variations in camera parameters and learns to generate more robust and
consistent depth estimates.

The limitation of solving the problem of camera generalization is the existence of
the proper dataset. For example, to train a model invariant to camera models, we need
a dataset containing images of the same scene captured by different cameras.

Primarily everything was developed using the KITTI dataset [28]. This dataset
served as a benchmark dataset for depth estimation problems. However, this will not
be the proper dataset for camera generalization as it only has one camera. Therefore,
we generated a custom dataset using CARLA Simulator. It contains different sequences
recorded by diverse camera models, as explained in Chapter 4.
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Chapter 3

Design

In this chapter we will detail the architecture taken as a reference model, as well as
the modifications we have made to it. Thus, we will explain the inclusion of adversar-
ial learning to provide the model with robustness to changes in the intrinsic camera
calibration parameters.

3.1 Baseline architecture

3.1.1 Description

First of all, we are going to show a schematic figure in which we can visually appreciate
the different parts of the baseline architecture.

Figure 3.1: Baseline method of self-supervised visual odometry and depth estimation:
a) pose and depth estimation networks; b) novel view-synthesis via differentiable im-
age warping; c) computation of the difference between the target frame, It, and the
estimated reconstruction of it, Ît.

17
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The basic pipeline of self-supervised visual odometry and depth estimation has
three main parts, as we can see in Figure 3.1. The first part (a) consists of an encoder
which, given two consecutive frames Is and It (Is = It−1), is in charge of feature
extraction. Subsequently, these features are used as input in two different decoders;
one of them estimates the depth of It, Dt, and the other one predicts the pose changes,
Tt−→s = [R|t], which contains the estimated translation vector t and rotation matrix R
from It to Is.

The second part of the architecture (b) uses Is, Dt and Tt−→s to reconstruct the It
frame, hence generating Ît.

Finally, the third part (c) measures the difference, defined by a specific loss, between
the It frame and the reconstruction of it, Ît, thus providing positive or negative feedback
to the network.

As we have seen in Chapter 2, self-supervised learning methods for depth prediction
and visual odometry are based on the reconstruction of a target frame from a sequence
of nearby views.

Nevertheless, in this case Ît is obtained from two adjacent frames, Is and It, the
camera calibration matrix, K, Tt−→s and finally Dt. We obtain the projection of each
target pixel, pt, on each source pixel, ps, by:

ps = KTt−→sDt(pt)K
−1pt. (3.1)

Intuitively, we first project pt in the 3D world with K−1. However, we have no
information on the depth, as K projects into the 3D world up to a scale factor. There-
fore, we obtain this pixel in the 3D world through Dt. Then, we use the transformation
matrix Tt−→s to transform the pixel to the source position. Finally, we use K to project
it back to the camera, thus obtaining the source pixel, ps.

As we can see, it is possible to express ps in terms of pt using the previous equation.
Therefore, the model makes use of that expression in order to reconstruct the target
frame and, after that, it computes the difference between the target frame and the
reconstructed one. This difference measure acts as the supervision signal to improve
predictions.

3.1.2 Loss functions

The loss function is what determines the learning goal, hence reflecting the perfor-
mance of the learning process based on the provided data. A standard loss function
used in self-supervised models for depth estimation is the absolute difference between
the reconstructed image against the real one (L1 loss [3]). However, we are going to use
also other two losses: structural similarity index measure (SSIM) [4] and smoothness
loss [30]. We follow other works [31] by combining the mentioned loss functions as each
of them gives us a different perspective of the error: L1 is merely the per-pixel differ-
ence; SSIM computes the similarity between two images by evaluating their luminance,
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contrast and structure; smoothnes measures how smooth/abrupt the depth transitions
are in the depth maps. Thus, by using these three losses together we ensure a better
result both numerically and visually.

L1

As described above, L1 loss is computed as the mean of the absolute value difference
between the reconstructed image Ît and the target one It at the pixel level.

L1(It, Ît) =
1

N

N∑
p=0

|It(p)− Ît(p)|, (3.2)

being p a pixel coordinate and N the total number of pixels in the frame.

SSIM

The Structural Similarity Index Measure (SSIM) loss [4] is a metric used to quantify
the similarity between two images. It measures the structural similarity and perceptual
quality by comparing the luminance, contrast, and structure of the images.

The SSIM loss provides a value between 0 and 1, where a higher value indicates a
greater similarity between the images, meaning lower error. It is designed to address
some of the limitations of traditional pixel-wise loss functions, such as mean squared
error (MSE), by considering human visual perception and image structures.

The luminance is expressed as:

l(a, b) =
2µaµb + C

µ2
a + µ2

b + C
, (3.3)

where µa and µb are the mean intensity values of a and b images, respectively.
Moreover, C is added to avoid numerical instability.

The contrast measure is computed as:

c(a, b) =
2σaσb + C

σ2
a + σ2

b + C
, (3.4)

where σ represents the standard deviation of the mean centered image.

Finally, the structure index is defined as:

s(a, b) =
σab + C

σaσb + C
. (3.5)
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Then, SSIM is expressed as:

SSIM(a, b) = [l(a, b)]α[c(a, b)]β[s(a, b)]λ, (3.6)

being α, β and λ adjustable parameters, strictly greater than 0, which allow us to
establish the influence given to each of the three components in the SSIM computation.
For simplicity, we have established α = β = λ = 1. Hence, taking this into account
and from the combination of the above equations, we can express the SSIM as follows:

SSIM(a, b) =
(2µaµb + C)(2σab + C)

(µ2
a + µ2

b + C)(σ2
a + σ2

b + C)
. (3.7)

Given that the SSIM provides a measure of similarity between two frames, it means
that a higher SSIM value corresponds to a lower error. To formulate this measure as a
loss function, we express it as follows:

LSSIM(It, Ît) =
1− SSIM(It, Ît)

2
. (3.8)

Smoothness

Smoothness loss encourages smooth and continuous depth or disparity maps [30].
Therefore, it penalizes abrupt or inconsistent depth transitions between neighboring
pixels in the estimated depth map. Hence, it achieves helping to produce more coherent
depth maps and visually plausible depth variations.

The smoothness loss is computed as:

Lsmooth = |∂x∂∗
t |e−|∂xIt| + |∂y∂∗

t |e−|∂yIt|, (3.9)

where ∂x and ∂y are the derivatives in the horizontal and vertical direction. More-
over, the normalised mean inverse depth, ∂∗

t , is also being considered. This term takes
the average of the estimated inverse depths and normalises them, so that they are in a
suitable range. Thus, this helps to penalise the decrease of the estimated depth towards
smaller values.

Final loss function

The final loss function is obtained by combining the three previously detailed loss
functions: L1, SSIM, and smoothness. Thus, it is expressed as follows:

Loss = (1− α)L1 + αLssim + βLsmooth, (3.10)

being α and β adjustable parameters, both strictly greater than 0, that enables to
determine the relative importance assigned to each of the three components.
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Complementary weighting between L1 and SSIM is used to leverage the strengths
of both loss functions. L1 loss is sensitive to the absolute differences between the
actual and predicted values, which makes it effective for capturing large errors and
maintaining structural detail. On the other hand, SSIM loss considers the structural
and perceptual similarities between images, which makes it more suitable for preserving
fine details and textures.

By introducing the parameter α, it is possible to adjust the balance between these
two components. A higher value of α will give more weight to the SSIM loss, which
will encourage the preservation of fine details and textures, while a lower value will
give more weight to the L1 loss, which will emphasise the capture of large errors.

In addition, the parameter β is added to adjust the influence of smoothness loss
on the final loss function. This allows to control the importance of smoothness and
regularity in the depth maps predicted, which helps to avoid inconsistent or noisy
solutions.

We have established α = 0.85 and β = 0.01, as done in the literature [32].

3.1.3 Auto-Masking Stationary Pixels

Self-supervised monocular training operates under the assumptions of a moving camera
and a static scene, as we have seen in Chapter 2. When these assumptions break down,
performance can suffer greatly, even causing ‘holes’ of infinite depth to appear in the
predicted depth maps [33]. To mitigate this problem, we use a simple auto-masking
method [32] that filters out pixels which do not change appearance from one frame to
the next one. This has the effect of letting the network ignore pixels that break the
reconstruction assumptions (see Section 2.2.1), such as objects which move at different
velocity as the camera, occlusions, and even to ignore whole frames when the camera
stops moving.

We perform this auto-masking method through the following equation:

Lossi,j = min (pe(It, Is−→t)
i,j, pe(It, Is)

i,j), (3.11)

where pe is the projection error defined by the specified final loss, and the terms
i, j represent the pixel coordinates of the image.

Intuitively, we are comparing for each pixel of It what gives us the smallest error:
using its corresponding value in Is or using the warped value Is−→t. As this loss is a
tensor of the same shape of the images, i.e. provides an error for each RGB pixel, we
first compute the mean per channel and, then, global mean. Hence, a single error value
per image is obtained.
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3.2 Baseline architecture + Adversarial learning

3.2.1 Description

The proposed architecture is almost identical to the baseline one seen in Section 3.1.1.
However, we have performed a modification in block a), where a new decoder has been
added whose purpose is to determine the camera with which each image was captured.

Figure 3.2: Modified block a) from Figure 3.1 by adding another decoder, K, as a
camera classifier.

This pipeline, as that of the baseline, accepts two images: a source image Is and
a target one It. Then, both images are passed to the encoder, which is in charge of
feature extraction, and, after that, these features are the input of the pose decoder,
depth decoder, and the additional camera K decoder.

This K decoder primarily handles the task of classifying the image’s corresponding
camera. In this approach, the proposed method involves training the networks in an
adversarial manner to achieve a feature representation that remains independent of the
camera model used.

3.2.2 Adversarial Learning

Adversarial learning is included in the proposed architecture to generate camera-
invariant features in the context of monocular depth estimation and visual odometry.
The core idea behind adversarial learning is to train the encoder network to gener-
ate features that are independent of the specific camera used to record the training
sequence.
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The adversarial learning framework consists of two main components: the encoder
and the discriminator (K decoder in this case). The encoder’s goal is to learn represen-
tations that are robust to camera variations, while the discriminator aims to distinguish
between features originated from different cameras.

During training, the encoder generates features from the input images, and these
features are fed into both the depth estimation and visual odometry networks. Simul-
taneously, K decoder receives the encoded features and attempts to predict the camera
that has captured the images to which these features correspond.

The training process involves a competition between the encoder and the discrimi-
nator. The encoder aims to generate camera-invariant features that make it challenging
for the discriminator to correctly identify the camera source. On the other hand, the
discriminator strives to improve its accuracy in camera classification by differentiating
the features.

By optimizing the encoder and discriminator simultaneously, the encoder learns to
transform the features in such a way that they become invariant to camera parameters.
In other words, the encoder attempts to modify the features to fool the discriminator
into making incorrect camera predictions. This adversarial training encourages the
encoder to generate features that capture the underlying scene geometry and dynamics
rather than camera-specific intrinsics.

As including adversarial learning in the pipeline, there are two different optimizers.
The first optimizer, represented by the networks in the green boxes of Figure 3.2,
aims to obtain accurate depth and pose values while simultaneously maximizing the K
decoder loss. By maximizing this loss, the features extracted become indistinguishable
between different cameras.

This is done by the following equation:

Lopt1 = (1− α)L1 + αLssim + βLsmooth − γLk, (3.12)

where α = 0.85, β = 0.01, γ = 0.01 and Lk is the Cross-Entropy loss function.

On the other hand, the second optimizer, represented by the network in the blue
box (see Figure 3.2), focuses solely on improving the discriminator’s ability to correctly
identify the camera associated with the input image. Its objective is to enhance the
network’s proficiency in camera classification by:

Lopt2 = Lk. (3.13)

By following this procedure, ideally the network would obtain the same feature
representation for a given scene captured by different cameras.
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3.3 Neural Networks

As we have to provide a depth value for every input pixel, encoder-decoder architec-
tures will be used. In this case, the encoder is in charge of creating a rich feature
representation of the image, while decoders are used to reconstruct the depth, estimate
the pose and classify the camera model from the features given by the encoder.

The encoders shown in Figure 3.1 and Figure 3.2 are built using a standard Resid-
ual Neural Network (ResNet18). Depth decoder is a fully convolutional U-Net alike
network, while pose decoder is a modified ResNet18 to be able to accept six channels
(rotation and translation from 2 images concatenated). Finally, K decoder of Figure
3.2 is designed to be small to encourage changes in the features. It consists of convo-
lutional layers followed by LeakyReLU activation functions, and finally a linear layer
is applied to generate the classifications.

3.3.1 ResNet-18

ResNet-18 (Residual Network-18) is a deep convolutional neural network architecture
[34] that is a variant of the ResNet family of models designed to address the problem
of vanishing gradients and improve training deep neural networks.

The architecture of ResNet-18 consists of 18 layers, including convolutional layers,
batch normalization layers, ReLU activation functions, and a global average pooling
layer followed by a fully connected layer for classification. The core idea behind ResNet-
18 is the use of residual connections, or skip connections, that allow the network to
learn residual mappings rather than directly mapping inputs to outputs. These skip
connections enable the gradient flow and alleviate the degradation problem that can
occur with deeper networks.

The basic building block of ResNet-18 is the residual block. Each residual block con-
sists of two convolutional layers with a shortcut connection that bypasses one or more
convolutional layers. The shortcut connection allows the input to be added element-
wise to the output of the residual block. This helps propagate gradients through the
network, enabling the network to learn more effectively. The residual blocks are stacked
together to form the overall architecture of ResNet-18.

3.3.2 U-Net

U-Net is a popular and widely used convolutional neural network architecture designed
for image segmentation tasks [35].

The U-Net architecture consists of an encoder (contracting path) and a decoder
(expanding path). The encoder gradually reduces the spatial dimensions of the input
image while increasing the number of feature channels through convolutional and pool-
ing layers. This allows the network to capture high-level semantic information from
the input image.
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The decoder takes the encoded feature maps from the encoder path and progres-
sively upsamples them while reducing the number of feature channels. Each upsam-
pling step is achieved through transposed convolutions or upsampling operations, which
recover the spatial resolution lost during the encoding process. The decoder also in-
corporates skip connections that connect corresponding feature maps from the encoder
to the decoder path at different spatial resolutions. These skip connections help retain
fine-grained details and aid in the localization of segmented regions.

The architecture’s contracting path and expanding path work together to form a
U-shaped structure.

In this case, we only use the expanding path of U-Net, which receives features at
different resolution levels that are the output of the ResNet-18 encoder.
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Chapter 4

Dataset

In this chapter, the dataset used to carry out this project, as well as the simulator used
to generate it, will be explained in detail. Furthermore, we will compare our custom
dataset with the KITTI dataset, which is the most used in similar benchmarks.

4.1 Dataset Description

The project is based on monocular depth and pose estimation through self-supervised
deep learning and adversarial learning to provide increased robustness to camera intrin-
sics. CARLA simulator [1], further described in Section 4.3, has been used to generate
synthetic data with different realistic scenes. We have generated a total of 8400 images,
distributed in 5 video sequences (sampling rate = 10 fps), all of them with a resolution
of 1980 x 1080. In order to develop an algorithm that is robust to camera changes,
it is necessary to use data with varied camera calibration parameters. Thus, we have
considered 5 different cameras for each video sequence by using different focal distances
(40, 60, 80, 100 and 120). Consequently, our final dataset has a total of 42000 images
(8400 images x 5 cameras), available both in RGB and at depth level.

Sequence # Images Image’s Size
1 2000 1980 x 1080
2 2000 1980 x 1080
3 2000 1980 x 1080
4 1200 1980 x 1080
5 1200 1980 x 1080

⊗

Camera ID FOV
1 40
2 60
3 80
4 100
5 120

Table 4.1: Dataset description. It contains 5 sequences; 8400 images. Each of them
has been captured by 5 different cameras, therefore we have a total of 42000 images.

It is important to mention from Table 4.1 that sequences 1, 2 and 3 will be used
to train the model, while sequences 4 and 5 will only be used for the evaluation phase.
Moreover, each of the training sequences belongs to a different map of the simulator.
On the other hand, Test Set 4 consists of an unseen trajectory captured in one of the
maps seen during training; sequence 5 has been generated in an unseen map.

Below, Figure 4.1 shows 5 different pairs of RGB-Depth images available in our
dataset, thus we can visually appreciate the quality of the generated images and some
of the different scenarios represented in our data.
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(a) Sequence 1 - RGB (b) Sequence 1 - Depth

(c) Sequence 2 - RGB (d) Sequence 2 - Depth

(e) Sequence 3 - RGB (f) Sequence 3 - Depth

(g) Sequence 4 - RGB (h) Sequence 4 - Depth

(i) Sequence 5 - RGB (j) Sequence 5 - Depth

Figure 4.1: Visual examples of the dataset.
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4.2 Complexity of test sets

As explained in Section 4.1, we have two test sets: Test Set 4 and Test Set 5. Both
use the same parameters for the initial configuration of the simulation environment,
except for the map where the sequence has been captured. These parameters consist
on the insertion of objects in the map, with the following quantities:

• Motorbikes, bikes, cars = 10 each

• Trucks = 6

• People = 15

It is important to note that these numbers do not determine the exact amount
of objects that will appear in the sequence. Alternatively, these values represent the
number of objects that have been inserted into the map for the simulation, so the
actual appearance of objects in the sequence will depend on the recorded trajectory
and the stochastic movement of those objects.

On the other hand, there are significant differences in the complexity of the two
test sets due to the characteristics of the map used. As we can see in Figure 4.2, Test
Set 4 is generated in an urban environment with a large presence of buildings, while
Test Set 5 takes place in a rural environment, almost without buildings.

Consequently, it can be considered that Test Set 4 has a higher complexity compared
to Test Set 5. Hence, it is expected that this difference will be reflected in the results
of the experiments, i.e. the errors obtained in Test Set 4 should be slightly higher than
in Test Set 5.

(a) Test Set 4 (b) Test Set 5

Figure 4.2: Aerial view of both test sequence maps.
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4.3 CARLA Simulator

The CARLA simulator [1] is a popular and highly adaptable open-source tool with a
wide range of resources for, among other things, the creation of synthetic autonomous
driving data in urban or rural environments. This simulator is used by many re-
searchers, specially for the purpose of developing and testing machine learning al-
gorithms for tasks such as pose and depth estimation, semantic segmentation and
autonomous driving systems. Therefore, CARLA provides an accurate simulation of
vehicles, traffic, weather conditions and many other factors.

On the one hand, the use of the CARLA simulator for the creation of a synthetic
dataset has multiple benefits. Firstly, it allows us to test algorithms in a safe and con-
trolled environment, avoiding risks of material damage or injury in certain simulations.
Furthermore, it enables easier generation of a much larger amount of high quality data
with a wide variety of conditions, which can improve the model’s ability to generalize
to new and unseen situations. In addition, CARLA is very versatile in generating data
in a realistic way, as it allows us to select different times of day, different weather condi-
tions, set the number and variety of objects in the scene, configure their movement and
speed, and modify many other parameters such as road geometry to create different
scenarios.

Another point to highlight from CARLA simulator is the large number of sensors
available on it to obtain annotations, such as RGB cameras, depth cameras, navigation
satellite system (GNSS), among others. Moreover, it is also important to mention that
the use of synthetic data allows the creation of perfect labels or ground truth, which
is specially useful in supervised, semi-supervised or, as in the case of this project,
self-supervised learning tasks, as it enables accurate evaluation of the models.

For all the above reasoning, we can assume that CARLA is a very valuable tool
for the task of creating high quality synthetic datasets and to evaluate deep learning
algorithms in the framework of this project.

Nevertheless, even though the simulator offers a high degree of customization and
flexibility, as it allows us to create a wide variety of accurate and varied synthetic
data, it is also necessary to take into account as a limitation that there is always a gap
between this data and the real one. Thus, the results obtained may not capture all the
complexity and variability of real-world data, which may limit the model’s ability to
generalize to unseen situations, thus hindering its applicability to real-world situations.

Concerning depth and pose annotations provided by CARLA, it is remarkable
that they are automatically generated during the simulation and are available for use.
Specifically, the annotations from the depth camera are raw data of a particular scene,
codifying the distance of each pixel relative to the camera, therefore creating a map of
depth with millimetric precision. On the other hand, pose annotations can be obtained
from its position in the global reference coordinate system of the map. As these are
synthetic data, we certainly know that the annotations are accurate, detailed and free
of human error.
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4.4 Custom Dataset vs KITTI

As KITTI is the standard benchmark for state-of-the-art depth estimation, we intro-
duce it and compare it with our custom dataset.

Significant differences exist in terms of origin and characteristics between the KITTI
dataset [28] and the custom dataset generated with CARLA simulator.

The KITTI Vision dataset has been created specifically for the development of chal-
lenging benchmark tests in the field of autonomous driving. An autonomous driving
platform equipped with high-resolution cameras, a Velodyne laser scanner and an ad-
vanced localisation system has been used. This dataset covers several tasks, such as
stereo, optical flow, visual odometry/SLAM and 3D object detection. It contains 389
stereo and optical flow image pairs, 39.2 km long stereo visual odometry sequences
and more than 200,000 3D object annotations. In addition, the stereo and optical flow
images have a resolution of 1240× 376 pixels after a rectification process.

On the other hand, the customised dataset was generated using the CARLA sim-
ulator, which provides an accurate simulation of vehicles, traffic, weather conditions
and other relevant factors. In this case, a total of 8400 images of 1980 × 1080 resolu-
tion were generated, distributed in 5 different video sequences, each captured with 5
cameras with diverse focal distances. This results in a dataset of 42000 images in total.

In order to develop depth estimation and visual odometry algorithms that are robust
to changes in intrinsic camera parameters, the custom dataset generated with CARLA
is more suitable. This is because the CARLA simulator allows precise control and
customisation of intrinsic camera parameters such as focal length, field of view and
distortion.

By having the ability to adjust these parameters in the custom dataset, different
camera configurations can be simulated in a systematic and controlled way. This
results in a synthetic dataset that reflects a wide variety of conditions that might
be encountered in the real world. By training depth estimation and visual odometry
models with data that encompass changes in intrinsic camera parameters, the model’s
ability to adapt to variations in these parameters is improved, which is one of the main
motivations for the thesis.

On the other hand, the KITTI dataset provides real-world data that may contain
limitations in camera calibration and errors in the intrinsic parameters. These errors
can affect the accuracy of depth estimation and visual odometry methods, especially
when looking for robustness to changes in intrinsic camera parameters. In contrast, the
custom dataset ensures accurate calibration and error-free depth and pose annotations,
as they are automatically generated during simulation.

From the above, we can say that the custom dataset generated with the CARLA
simulator is more appropriate for developing depth estimation and visual odometry
methods that are robust to changes in intrinsic camera parameters.
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Chapter 5

Experiments and Results

Throughout this chapter we will explain the different metrics used to evaluate the
models, as well as the experimental procedure carried out during the thesis. Moreover,
we will show the results obtained in each of the experiments and interpret them for
further analysis.

5.1 Evaluation Metrics

In this section we will detail the different metrics that will be used to evaluate both
depth and pose estimation performance.

For depth evaluation, we are going to use the following metrics: Absolute Relative
Error, RSE, RMSE, Log Scale Invariant RMSE and Accuracy under a threshold [36].
It is important to note that, due to the monocular nature of the predicted depth,
determining the correct scale becomes ambiguous. As a result, it is necessary to scale
the predicted depth to match the ground truth. To achieve this, we adopt a commonly
used approach in the literature, where the predicted depth is scaled by the median value
of the ground truth depth. This scaling process helps align the predicted depth with
the true depth values, enabling more accurate comparisons and evaluations through
the mentioned metrics.

In the case of odometry evaluation, we are just going to use the RMSE metric. In
addition, we are going to apply a 3D alignment technique called “Least-Squares Fitting
of Two 3-D Point Sets” [37] prior to the calculation of the RMSE.

This alignment consists of, given two sets of 3D points and their correspondence,
returning a least square optimal rigid transform (also known as Euclidean) between
them. Therefore, the process consists of finding the transformation parameters (trans-
lation, rotation and, optionally, scaling) that minimise the sum of the squared distances
between the transformed points in one set and their corresponding points in the other
set. This has been achieved through Singular Value Decomposition (SVD).

As follows, the mentioned metrics are going to be detailed. We will denote d̂p as
the depth prediction at pixel p and dp as the actual depth value at pixel p.

33
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5.1.1 Absolute Relative Error

The Absolute Relative Error provides an indication of how accurate is model at pre-
dicting depth compared to the actual values. It serves as a measure of precision, where
a lower value suggests a higher level of accuracy/precision.

Abs.Rel.Error =
1

N
·

N∑
p=0

|dp − d̂p|
dp

(5.1)

As we can see in the above equation, the Absolute Relative Error is calculated by
dividing the absolute magnitude of the difference between the predicted depth values
and the actual depth values by the actual depth value. This relative error is then
averaged over the total number of pixels in the frame, N .

5.1.2 RSE

The Relative Squared Error, RSE, is a widely used metric to measure the discrepancy
between predicted and actual depth values in a relative manner, according to the
following formula:

RSE =
1

N
·

N∑
p=0

(dp − d̂p)
2

dp
(5.2)

The RSE is calculated by taking the difference between the predicted depth values
and the actual depth values, squaring them and dividing by the actual depth value.
This relative squared error is then averaged over all pixels in the frame. By squaring
the errors and normalising them to the actual depth values, the RSE penalises larger
errors more. Therefore, a lower RSE value indicates higher accuracy.

5.1.3 RMSE

The Root Mean Squared Error, RMSE, is calculated by taking the square root of the
mean squared errors between the predicted depth values and the actual depth values.
The mean is used to ensure that the error is averaged over all pixels in the frame. The
equation for its computation is:

RMSE =

√√√√ 1

N
·

N∑
p=0

(xp − x̂p)2, (5.3)

where, in the case of depth evaluation, xp = dp and x̂p = d̂p.

On the other hand, in odometry evaluation xp is the pth value (out of T ) of the
ground-truth pose in XYZ coordinates and x̂p is its correspondent predicted value.
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5.1.4 Log Scale Invariant RMSE

The Log Scale Invariant RMSE is a widely used depth estimation metric that takes into
account the invariance to the logarithmic scale. This type of scale is used because of
the non-linear nature of depths in the scene. Instead of working directly with the actual
depths, we take the logarithm of the depths before performing the calculations. In this
way, we avoid the inherent ambiguity of monocular self-supervised depth estimation
regarding to the large source of uncertainty coming from the overall scale, by using a
scale-invariant error [38]. This metric is computed as:

Log Scale Invariant RMSE =

√√√√ 1

N
·

N∑
p=0

( log(dp)− log(d̂p) )2 (5.4)

5.1.5 Accuracy under a threshold

Unlike the rest of the traditional metrics explained above, which assess the magnitude
of errors without taking into account a specific acceptance range, the accuracy under
a threshold metric considers a set threshold or limit, thus allowing to assess whether
the depth predictions fit within an acceptable range of error.

The formula used for the calculation of this metric is:

Acc. under Threshold = max (
dp

d̂p
,
d̂p
dp

) < δ , (5.5)

being δ the specific threshold established. In this case, we have decided to evaluate
the performance under three different thresholds: δ1 = 1.25, δ1 = 1.252 and δ1 = 1.253.

5.2 Experimental procedure

In this section, we are going to explain the experimental procedure followed in the
implementation of the algorithm. First of all, it should be noted that, in order to
decrease the computational cost, a reduced version of the original dataset has been used.
As explained in Chapter 4, the dataset consists of 3 sequences × 5 different cameras
× 2000 images. However, for our experiments a subset consisting of 3 sequences ×
5 cameras × 500 images has been selected. Hence, we have a total of 7500 training
images instead of 30000.

In the same way, in order to mitigate the computational cost, we have applied
resizing to each of the images from an initial resolution of [1980, 1080] to [576, 960],
both in train and test phases. This change in the scale of the images has significantly
accelerated the training during the experimental process, as well as the GPU memory
consumption.
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The experiments carried out in this study are based on the training and evaluation
(in terms of both depth estimation and visual odometry) of three different models:

• Baseline. This model has been trained only with images captured by camera 1
(detailed architecture in Section 3.1). Thus, it serves as a reference to compare
the performance of the other two models. ∼ 20h of training.

• Multiseq. In this case, the model has the same architecture as the baseline one,
but the training has been performed using images captured by cameras 2, 3
and 4. This strategy takes advantage of visual information from multiple image
“perspectives”, which is expected to result in improved results comparing to the
baseline model. ∼ 3 days of training.

• Multiseq-adv. The architecture of this model is described in Section 3.2. The
training has been performed using images captured by cameras 2, 3 and 4, as
Multiseq model. However, the adversarial training technique has been included
in order to achieve greater robustness to changes in the intrinsic parameters of
the camera. Therefore, the model is expected to learn to generalise better in
situations where these parameters may vary. ∼ 5 days of training.

In each experiment, the first step consists of selecting the cameras with which the
model will be trained and loading the data associated to them. Then, the calibration
matrix of each chosen camera, K, is extracted as follows:

image_w = 1980

image_h = 1080

resized_w = 576

resized_h = 960

focal = image_w / (2.0 * tan(FOV * pi / 360.0))

K = identity(3)

K[0, 0] = K[1, 1] = focal

K[0, 2] = image_w / 2.0

K[1, 2] = image_h / 2.0

K[0, :] *= (resized_w/image_w)

Figure 5.1: Calculation of the K matrix

In Figure 5.1, it is worth remembering that 1980×1080 are the original dimensions
of the images, while 576× 960 are the dimensions of the resized images. On the other
hand, the term ‘FOV’ is one of the intrinsic parameters of the camera that refers to
the Field Of View value.

In each experiment, once the data has been loaded and the corresponding K matrices
have been extracted, we proceed to run the iterative learning algorithm, which is
explained below.
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1. First, a random image is selected and loaded from the dataset, as well as its
previous and next frame, using the DataLoader. During this step, the ID of the
camera that captured these images is also obtained.

2. Gaussian noise is then introduced into the three loaded images. This noise is
added with a probability of 1, mean of 0.0 and a standard deviation of 0.01, in
order to introduce variability in the images.

3. Then, the encoder is used to extract the features from the images. Thus, we
obtain high quality representations that capture the relevant information of each
image.

4. (a) Next, the pose decoder is used to receive as input the features extracted from
the previous image and the target image, both concatenated. From these
features, the pose decoder produces the axisangle and the translation matrix,
which are used to construct a rotation-translation matrix representing the
estimated pose change between the two frames. The same procedure is
performed using the concatenated target and next images.

(b) In turn, the depth decoder receives as input the features extracted from
the target image by the encoder, thus generating a disparity value for each
pixel of the image. From the inverse of these values, the depth is obtained.
Then, a scaling is performed using predefined minimum and maximum depth
values.

5. In the case of Multiseq-adv model, the features of the target image are also intro-
duced in a discriminator, whose aim is to predict the camera that captured the
image. This step is performed in order to apply adversarial training to improve
the robustness of the model to changes in the intrinsic parameters of the camera.

6. Then, we warp the previous frame to the target one, taking into account the
estimated rotation-translation matrix, the K-matrix and the predicted depth.
This warping consists of projecting the previous image to the target image space
using bilinear interpolation [9]. In the same way, a warping of the next image to
the target one is also performed.

7. (a) Subsequently, the loss associated to the warping process is calculated. This
is done by taking into account both the warping of previous-target and next-
target. A linear combination of both losses is used, each calculated using
equation 3.10, weighting both by 0.5.
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(b) The same loss formula is computed on the previous and next frames with
the target image without warping. This technique is known as automasking
(see Section 3.1.3), which avoids penalising pixels whose movement cannot
be explained by camera movement alone. To do this, the minimum value
between the two losses (the one that takes into account warping and the one
that does not) is selected for each pixel.

These steps are repeated in each iteration of the algorithm, allowing to gradually
improve the quality of the pose and depth estimations and performing for each batch
the calculation of the gradients and the update of the model parameters.

On the other hand, Table 5.1 shows the most relevant hyperparameters chosen for
training. It should be noted that all three models share the same hyperparameters,
which ensures a fair and consistent comparison between them.

Hyperparameter Value
Batch Size 5
Learning Rate 1e-5
Optimizer Adam
Min depth 0.1
Max depth 100
# Epochs 300
# Workers 6

Table 5.1: Training hyperparameters configuration

Note that the parameters ‘Min depth’ and ‘Max depth’ are the ones that, as we
have explained above, have been used to scale the depth values. These values have
been limited in this range to avoid that the existence of pixels very far away from all
the others (for example, those belonging to the sky), generate depth maps in which
the differences between the rest of the objects are not appreciated.

5.3 Analysis of the results

As detailed in Section 4.1, the evaluations of the three models will be carried out on
two test sets: Test Set 4 and Test Set 5. It should be noted that there is a difference in
complexity between these two test sets, as justified in Section 4.2, so we have different
expectations regarding the results obtained. Consequently, we expect to obtain worse
results in Test Set 4 compared to Test Set 5, due to the fact that the fist one was
recorded in a more complex environment than the one used in the second test set.

We will now proceed to analyse and discuss these results in detail, both numerically
and visually.
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5.3.1 Depth Estimation

From Table 5.2 we can analyse the numerical results obtained by the different models
for each of the cameras. Note that the lowest error value for each case is in bold.

Camera Approach abs rel sq rel rmse rmse log a1 a2 a3
Baseline 0.22 3.44 10.45 0.27 0.69 0.91 0.97

1 Multiseq 0.28 5.71 12.3 0.33 0.63 0.87 0.94
Multiseq-adv 0.25 4.75 11.82 0.3 0.66 0.88 0.95

Baseline 0.26 3.18 10.26 0.3 0.6 0.89 0.96
2 Multiseq 0.28 5.67 11.0 0.33 0.66 0.88 0.94

Multiseq-adv 0.24 3.9 10.48 0.29 0.67 0.89 0.95
Baseline 0.3 3.35 10.42 0.35 0.51 0.83 0.95

3 Multiseq 0.26 3.86 9,47 0.31 0.69 0.88 0.94
Multiseq-adv 0.26 3.9 9.72 0.31 0.67 0.89 0.95

Baseline 0.37 3.79 10.62 0.41 0.43 0.74 0.89
4 Multiseq 0.26 2.96 8.46 0.32 0.68 0.87 0.94

Multiseq-adv 0.24 2.83 8.5 0.31 0.68 0.87 0.94
Baseline 0.39 3.64 11.45 0.48 0.33 0.66 0.84

5 Multi-seq. 0.25 2.42 8.71 0.34 0.63 0.84 0.93
Multiseq-adv 0.23 2.32 8.63 0.32 0.65 0.86 0.94

Table 5.2: Results of depth estimation over Test Set 4

As we can see in Table 5.2, the Baseline model shows better performance in the
test sequence of camera 1 compared to the other models. This supports the idea that
the Baseline model benefits from the consistency between the training and test images
in terms of the intrinsic camera parameters.

Furthermore, we observe a worsening effect of the Baseline model as the FOV
increases, since the error values increase progressively as the camera is changed. For
example, the absolute error starts at 0.22 in camera 1 and increases to 0.39 in camera
5, which evidences the dependence of the models on the intrinsic parameters of the
training camera.

Finally, the Multiseq-adv model provides better results on most of the error mea-
sures compared to the other models: Baseline and Multiseq. This model has proven to
be more robust in terms of generalisation, as it does not appear to show dependence
on the FOV value. This is reflected in the fact that the error values obtained are very
similar to each other regardless of the camera on which they are evaluated. Hence, this
result confirms the expected effect with the inclusion of adversarial training, showing
how this change in the architecture improves the model’s robustness in the presence of
unseen cameras.

Alternatively, Figure 5.2 shows an image from the Test Set 4 in RGB format cap-
tured by the 5 different cameras. In turn, we show in each case the depth predictions
generated by the 3 models, which allows us to compare and analyse their performance
in each of the cameras.
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Camera Original Image Baseline Multiseq Multiseq-adv
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Figure 5.2: Visual results of depth estimation over Test Set 4

After a careful examination of the depth predictions in Figure 5.2, certain relevant
patterns and effects have been identified.

Firstly, when analysing the predictions of the Baseline model, it is clear that it gen-
erates a relatively accurate estimate when the image has been captured by camera 1,
which makes sense, since the model has been trained only with images from this cam-
era. However, as the camera is changed and the FOV value increases, the predictions
deteriorate progressively. This deterioration can be seen as a blurring effect both in
areas close to the camera and in the background. This effect confirms the dependence
of the depth estimation models on the intrinsic calibration parameters of the camera
that recorded the training sequence, which supports the main motivation of the thesis.

On the other hand, when considering the predictions provided by the Multiseq
model, it can be observed an improvement compared to the Baseline model. The reason
of this improvement is that Multiseq model has been trained with images captured by
different cameras (2, 3 and 4), which allows it to generalise better. However, the
same deterioration effect is observed in cameras 4 and 5, although less pronounced.
In addition, an inferior performance is evident in camera 1 compared to the Baseline
model, as in this case it fails to correctly capture the shapes of nearby objects, such as
the car in front of the camera.

Regarding the predictions of the Multiseq-adv model, it can be seen how the blurring
effects as the FOV increases are much less present, which significantly improves the
predictions compared to the other two models. Although, once again, the Baseline
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model seems to perform better on the images captured by camera 1, Multiseq-adv
model manages to correctly identify the structure of most of the nearby objects also in
this camera, such as the car in front. In fact, this model is the only one that achieves
at identifying this car in camera 2. Hence, this model provides better results both on
the cameras used during training (2, 3 and 4) and on cameras not seen during training,
such as camera 5. Furthermore, it also improves the predictions on camera 1 compared
to the Multiseq model.

Now, we are going to evaluate the numerical and visual results for depth estimation
over Test Set 5. Table 5.3 shows the error obtained by each of the models in all cases
over this test set.

Camera Approach abs rel sq rel rmse rmse log a1 a2 a3
Baseline 0.16 2.26 9.7 0.22 0.74 0.92 0.98

1 Multiseq 0.21 4.15 11.69 0.26 0.75 0.89 0.96
Multiseq-adv 0.18 3.19 10.95 0.23 0.79 0.92 0.98

Baseline 0.18 2.15 10.02 0.26 0.72 0.89 0.96
2 Multiseq 0.18 3.47 10.44 0.26 0.78 0.89 0.96

Multiseq-adv 0.16 2.98 9.86 0.23 0.8 0.92 0.97
Baseline 0.2 2.57 10.81 0.34 0.7 0.85 0.91

3 Multiseq 0.17 2.53 8.69 0.25 0.79 0.91 0.97
Multiseq-adv 0.16 2.45 8.6 0.24 0.8 0.92 0.97

Baseline 0.22 2.93 11.56 0.42 0.67 0.81 0.88
4 Multiseq 0.2 2.46 8.44 0.3 0.74 0.86 0.92

Multiseq-adv 0.16 2.03 8.22 0.26 0.79 0.91 0.96
Baseline 0.25 3.9 13.47 0.54 0.62 0.77 0.83

5 Multiseq 0.21 2.36 9.29 0.34 0.71 0.84 0.9
Multiseq-adv 0.17 2.06 9.11 0.3 0.75 0.88 0.93

Table 5.3: Results of depth estimation over Test Set 5

Despite the fact that this sequence has been captured in a map not seen during
training, it has been observed to present a lower complexity compared to Test Set 4,
as explained in Section 4.2. Due to this, we can appreciate in Table 5.5 a significant
overall reduction in all the numerical errors obtained.

On the other hand, similar patterns than those obtained with Test Set 4 have
been identified in this case in the error differences between the models. Baseline still
performs the best on camera 1, while the Multiseq-adv model leads (overall) the rest of
the evaluations, showing lower errors on both seen and unseen cameras. This suggests
that the inclusion of adversarial training improves the robustness of the model to new
cameras and appears to reduce its dependence on intrinsic camera parameters, both in
known and unknown maps.
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In Figure 5.3, we show an RGB image from Test Set 5 captured by each camera
and the predictions obtained by the models.

Camera Original Image Baseline Multiseq Multiseq-adv
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5

Figure 5.3: Visual results of depth estimation over Test Set 5

After examining the images of Figure 5.3, it has been observed that there is a
deterioration in the performance of the Baseline model as the FOV increases, as well
as in Test Set 4. However, this model provides the best visual results for images
recorded with camera 1.

On the other hand, as in the previous case, Multiseq model shows an improvement
compared to the Baseline model. However, it still faces difficulties in generalising to
unseen cameras, especially with a high FOV (camera 5).

Finally, Multiseq-adv model seems to offer the best results in terms of depth pre-
dictions, mostly for the scene background. However, in this case some artifacts are
observed at the top of the images generated with cameras 3, 4 and 5, apparently
caused by the presence of clouds.
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5.3.2 Visual odometry

As follows, we will evaluate numerically and graphically the results obtained by the
three models with respect to visual odometry.

Table 5.4 shows the exact error values obtained by comparing the ground-truth
pose with the predicted ones over Test Set 4 for each of the cameras and models.

Camera Approach RMSE
Baseline 37.2176687

1 Multiseq 42.9560020
Multiseq-adv 44.0374543

Baseline 33.0748976
2 Multiseq 39.6795019

Multiseq-adv 39.7457542
Baseline 38.1689396

3 Multiseq 34.4765797
Multiseq-adv 35.2289832

Baseline 45.2183431
4 Multiseq 37.9663446

Multiseq-adv 38.4187968
Baseline 44.9504420

5 Multiseq 42.5429585
Multiseq-adv 41.6491539

Table 5.4: Results of visual odometry over Test Set 4

Firstly, it stands out from Table 5.4 that the baseline model obtains the best results
both for cameras 1 and 2. This is consistent, as this model has been trained with the
smallest FOV, which allows it to perform better on cameras with the same FOV value
or a very similar one.

On the other hand, Multiseq model provides the best results in cameras 3 and 4,
in contrast to the conclusions drawn from depth estimation. However, the error values
are practically identical between Multiseq and Multiseq-adv models. Furthermore,
Multiseq-adv shows the best performance in camera 5, which has not been seen by any
of the models. Thus, although the differences between the results are small and do not
allow conclusive information to be extracted, it can be assumed that Multiseq-adv has
poor results but demonstrates a slightly higher generalisability on unseen cameras.

Figure 5.4 shows the ground-truth (blue) and predicted trajectories (orange) for
each model and camera over Test Set 4. This way, the figure allows us to evaluate the
visual differences between the models, as well as to analyse the effect of the FOV on
the pose estimation task.
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Figure 5.4: Graphical results of visual odometry over Test Set 4
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We observe in Figure 5.4 that the ground truth trajectory remains constant as
the FOV increases. This is logical, since the intrinsic parameters of the camera have
no influence on the trajectory followed by the on-board camera. However, there is a
deterioration in the pose predictions as this value increases, which is evidence of the
dependence of the models on this variable.

In general, we can appreciate that estimated poses are very poor, as none of them
manages to correctly model the real trajectory. This may be due to the complexity
of both the environment and the generated random trajectory, which represents a
challenge for the evaluated models. It is possible that more data could improve the
performance in this case. However, based on the graphical results obtained, we can
only draw the above-mentioned conclusion about the FOV effect on visual odometry.

On the other hand, Table 5.5 shows the numerical results on Test Set 5.

Camera Approach RMSE
Baseline 64.2253016

1 Multiseq 94.2972567
Multiseq-adv 70.3132984

Baseline 24.6336585
2 Multiseq 16.6271762

Multiseq-adv 11.2942427
Baseline 33.8584413

3 Multiseq 21.7097867
Multiseq-adv 14.5281325

Baseline 60.0052456
4 Multiseq 36.1814413

Multiseq-adv 17.1696794
Baseline 95.5537893

5 Multiseq 60.4466667
Multiseq-adv 24.1619515

Table 5.5: Results of visual odometry over Test Set 5

After examining the results of Table 5.5, we can see more consistency compared to
those obtained with Test Set 4. This may be because this ground-truth trajectory is
simpler, therefore, it could be modelled more accurately.

Moreover, the numerical results suggests that all models have poor performance
when evaluated with camera 1. In this case, the Baseline model provides the lowest
error compared to the other two models.

Both the Baseline and Multiseq models show an increase in error values as they
are evaluated with higher FOV cameras, from camera 2 to camera 5. However, the
Multiseq-adv model manages to provide considerably lower error values. Although the
latter model also experiences an increase in its RMSE with increasing FOV, it manages
to mitigate this effect to a large extent compared to the other two models thanks to
the inclusion of adversarial training in its architecture.
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Figure 5.5: Graphical results of visual odometry over Test Set 5
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We can observe from Figure 5.5 that, in general, all models seem to provide poor
pose estimates for camera 1, according to Table 5.5. This can be attributed to the fact
that the smallest FOV is used in camera 1, which can result in images with excessive
“zoom”. The presence of multiple objects close to the camera could be hindering
accurate trajectory estimation.

On the other hand, it can be observed that the baseline model shows a progressive
deterioration in performance as we move from camera 2 to camera 5, again highlighting
its dependence on intrinsic camera parameters.

Both the Multiseq and Multiseq-adv models perform well in cameras 2, 3 and 4,
although there is a slight improvement in the performance of Multiseq-adv model.
Furthermore, Multiseq-adv shows significantly better results compared to the other
models when evaluated in camera 5, demonstrating a higher robustness to unseen
cameras.
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Chapter 6

Conclusions

In this chapter we will review the fulfilment of the objectives set for the development
of the thesis. Furthermore, we will present some ideas for future work to continue
with this research line. Finally, the conclusions obtained throughout the thesis will be
presented.

6.1 Review of objectives

This project has been successful in meeting the objectives set out in Section 1.2.

Firstly, a self-supervised deep learning model capable of estimating both the depth
of each image in a video sequence and its trajectory has been designed and implemented,
demonstrating robustness to changes in the intrinsic calibration parameters of the
camera through adversarial learning.

In terms of secondary objectives, extensive knowledge in the area has been acquired
by studying and analysing the limitations of the state of the art in depth estimation
and visual odometry. In addition, a customised dataset has been created that contains
several realistic sequences and allows for fair comparisons between sequences captured
by different cameras. This has provided a suitable evaluation environment for studying
the effects of the FOV value on the performance of a baseline model.

The proposed architecture has also been evaluated in terms of depth estimation and
visual odometry, comparing the results obtained with those of the baseline architecture.

Finally, in general, the experiments have shown improvements with the inclusion
of adversarial learning in the proposed model.

In summary, this project has successfully met all the objectives set, advancing
the knowledge and application of depth estimation and visual odometry using a self-
supervised model that is robust to changes in the intrinsic parameters of the camera.
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6.2 Future work

Although this research has shown the potential of adversarial learning in adding ro-
bustness to camera variations, there are still areas that could be explored in future
research. The following ideas are proposed:

• Training the model on the full dataset. As it has more examples, it would po-
tentially allow modelling more complex environments, such as Test Set 4. This
could help to improve the generalisability of the model and its performance in
more challenging scenarios.

• Evaluation on the KITTI dataset [28], as it is widely used in depth estimation
tasks. This would allow demonstrating in this dataset, that is recognised in the
scientific community, the improvement in the results obtained by incorporating
adversarial training .

• Independent analysis of depth estimation and visual odometry. For a deeper
understanding of the results and targeted improvement, the individual effect of
depth estimation and visual odometry on final error could be investigated.

These research lines of future work may expand knowledge and improve results in
the field of depth estimation and visual odometry.

6.3 Conclusion

In this Master thesis, the challenge of estimating depth in conjunction with visual
odometry in video sequences using self-supervised deep learning models has been ad-
dressed. Clear objectives were set and comprehensive experiments were conducted to
evaluate the performance of three proposed models: Baseline, Multiseq and Multiseq-
adv. Through analysis of the results, significant conclusions have been drawn.

Firstly, we have shown the dependence of the models on the intrinsic camera pa-
rameters, especially the Baseline one in Depth estimation and the three of them in
terms of visual odometry estimation. As the FOV increased, a deterioration in the
accuracy of the results was observed.

Furthermore, it was found that the inclusion of adversarial training in the Multiseq-
adv model significantly improved the robustness to unseen cameras and reduced the
dependence on intrinsic parameters. This model demonstrated superior performance
in terms of depth estimation and visual odometry.

Despite the progress made, there are open lines of research to continue this work,
as explained in Section 6.2.

In conclusion, this work has achieved the proposed objectives, demonstrated im-
proved performance by incorporating adversarial training, and identified challenges and
areas for improvement. Thus, these results open up new opportunities for the appli-
cation of self-supervised deep learning models and stimulate future research in this
line.
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